لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 18 صفحه
قسمتی از متن .doc :
هندسه در راز و رمزهای دینی
بررسی تطبیقی دایره به عنوان نماد دینی در تمدنهای بینالنهرین، ایران، آیین بودایی هند و چین
مقدمه:
در جهان باستان، اعتقادات دینی و اسطورهای سر منشأ بسیاری حرکتهای انسانی بود. درون و ذات هر پدیدهای که رخ میداد به نوعی به اسطوره و دین پیوند میخورد و هنر بهترین وسیله برای نمایش این تفکر دینی و اسطورهای بود.
در هنر باستانی، برخی نقشها و نمادها صرفا تصویر نبودند بلکه نماد یک عقیده و سمبل دینی بودند. از میان این نشانههای دینی میتوان به دایره اشاره کرد. دایره در جهان باستان از جمله بینالنهرین، ایران، مصر، هند و تمدنهای بودایی مذهب نقش مهمی را به عنوان سمبل دینی به عهده گرفته است.
حضور دایره در ابتدا در ادیان خدا - خورشید، از بینالنهرین شروع شد و به ایران رفت. دایره نماد خدای خورشید بود ولی بعدها به عنوان نماد دینی و عقیدتی به مصر و چین و هند و... رفت و نقشهای متعددی به خود گرفت.
دایره و مرکز از جمله رمزهای اساسی محسوب میشوند. درخت زندگی و مار، در زمانی اساطیری و در بهشت روی زمین که مستدیر توصیف شده، نشانهها و نگاهبانان مرکز بودند. در غالب تمدنها، ابدیت به شکل دایره و چرخ و اروبوروس، ماری که دمش را گاز گرفته تصویر میشود. شکل مدور نمودار یکی از مهمترین جهات زندگی یعنی وحدت و کلیت و شکفتگی و کمال است. انسان غالبا در درون دایرهای که نشانگر تناسبات پیکر است تصویر شده است. در بسیاری سنن، به این شکل بسته که انسان را در برگرفته؛ محافظت میکند، کار ویژهای جادویی منسوب شده است.(مونیک دوبوکور،1376،ص77(
در تمامی ادیان و اساطیری که خورشید نقش مهمی در آنها ایفا میکند شکل خورشید به تدریج تبدیل به دایره شده و به عنوان نماد خورشید در هنرهای دینی آنان مطرح شده است.«خورشید غالبا در مرکز کیهان تصویر شده است و نشانهی عقل عالم به شمار رفته است آن چنان که قلب آدمی مقر بعضی قوای وی محسوب میشود. خورشید به عنوان قلب جهان و چشم عالم، گاه در مرکز چرخ فلک البروج میدرخشد و نیز یکی از صور درخت جهان است که در این نقش پرتوهایش درخت زندگی به شمار میروند(مونیک دوبوکور،1376، ص86)
در این تحقیق به بررسی تطبیقی دایره در اعتقادات مذهبی بینالنهرین، ایران، هند و نیز جهان بودایی مانند چین پرداخته میشود، به اهمیت دایره در هنر مذهبی جهان باستان توجه شود.دایره در هنر بینالنهرین و ایران
در تمدن بینالنهرین، آشور( آسور) خدای بزرگ و محافظ کشور آشور است. قرص بالدار او را احاطه کرده است و کمانی بر ضد دشمنان دارد. وی حامی جنگ و سپاه کشور خود است.(جیمز هال، ص327)در کهنترین تصاویر خورشید- خدایان، هالهی تقدس ظاهر میشود که به شکل قرص است. هاله یا به صورت قرص ساده یا پرتوهای نوری در میآید که از سر آنها ساطع است.(جیمز هال، ص221)
دایره و چرخ همواره بر یکدیگر دلالت کردهاند و همراه هم بوده و گاه به یکدیگر تبدیل شدهاند. اولین چرخهایی که در تاریخ نشانی از آنها یافت شده چرخهای ارابه ای است مخصوص حمل اموات که کاتبی سومری در 3500 ق.م آن را تصویر کرده است.(مونیک دوبوکور،1376ص87)صلیب با چهار بازوی مساوی – که ابتدا دایره بود و- درون یک دایره محاط شده است، چهار جهت اصلی آن در بینالنهرین نماد چهار جهت اصلی طبیعت و بادهای باران زاست که نماد خدایان آسمان، آب و هوا است و نیز نماد شمش Shamash و آنو Anu خدای آسمان است(جیمز هال، ص205)
صلیب با بازوی مساوی نماد خدای آسمان بین النهرین
دایره نماد شمش خدای خورشید بینالنهرین است. دایرهای به صورت ستاره چهار پر با چهار شعله یا پرتو که درون یک دایره واقع شدهاند.(جیمز هال، ص205)
دایره نماد خدای خورشید شمش
شاه بابل در حال قربانی کردن برای الهه خورشید
مار به منزله علامتی از مدار ماه که به صورت دایرهای چنبر زده است. از نمادهای کیهانی بین النهرین
یکی دیگر از نمادها و سمبلها که بر دایره دلالت میکند، گردونه تندروی است که با اسب کشیده میشود؛ متعلق به مهاجمان آریایی که در پیروزی نظامی آنها جنبهای قاطع داشت و بعدها در قصر آشور بانیپال دوم ظاهر شد. گردونه نظامی نماد پیروزی و اسب نماد نیروی خورشید بود. گردونه نیز وسیله انتقال بسیاری از خورشید- خدایان مانند ایشتار الهه جنگ بینالنهرین که همواره سوار بر گردونه به تصویر در آمده است.)جیمز هال 180(
چرخ گردونه در بین النهرین که کاملا بر دایره دلالت می کند
همچنین در بینالنهرین نمادهای دیگری ظاهر شده که کاملا دایرهای شکل است و آن گروهی از خدایان(هفت عدد) بینالنهرین بدون نام که برای اولین بار به روی مهرهای استوانهای شکل بابل
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 18 صفحه
قسمتی از متن .doc :
بردارها:
بردار: دارای بزرگی و جهت است، بردارها از قاعده ترکیب (برداری) خاصی پیروی می کنند.
لیست برداری: کمیتی است که هم بزرگی و هم جهت دارد و بدین سبب می توان آن را با یک بردار نمایش داد.
برخی کمیتهای فیزیکی، از جمله جابجایی، سرعت و شتاب کمیتهای برداری دارند.
همه کمیتهای فیزیکی جهت ندارند، مثلاً دما، انرژی، جرم و زمان جهت خاصی را در فضا نشان نمی دهند این نوع کمیتها را نرده ای گویند و محاسبه های مربوط به آن با قاعده های جبری عادی انجام می شود.
ساده ترین کمیت برداری، جابجایی یا تغییر مکان است. برداری که جابجایی را نشان می دهد، بردار جابجایی نامیده می شود.
جمع کردن بردارها به روش هندسی :
شکل1-1 روش هندسی مربوط به جمع کردن بردارهای دو بعدی a و b را نشان می دهد.
جمع برداری که به این صورت تعریف می شود دو خاصیت مهم دارد.
نخست ترتیب جمع کردن بردارها اهمیتی ندارد. جمع کردن a و b همان نتیجه جمع کردن b با a را بدست می دهد.
یعنی (قانون جابجایی) a+b=b+a
دوم، هر گاه بیش از دو بردار داشته باشیم، برای جمع کردن می توانیم آنها را به هر ترتیبی که بخواهیم گروه بندی کنیم اگر بخواهیم بردارهای aوbوc را جمع می کنیم می توانیم نخست aوb را جمع کنیم و سپس مجموع این دو را با c بدست آوریم . همچنین می توانیم نخست bوc را جمع و سپس آن مجموع را با a جمع کنیم نتیجه ای را که به دست می آوریم برای هر دو یکسان است یعنی:
( قانون شرکت پذیری)
برادار b برداری است که همان بزرگی بردار b را دارد اما جهتش مخالف است . با جمع کردن این دو بردار داریم:
بنابراین جمع کردن –b همان اثر تفریق کردن b را دارد . از این خاصیت برای تعرةیف تفاضل دو بردار استفاده می کنیم .
فرض می کنیم: پس (تفریق برداری)
یعنی برای تعیین بردار تفاضل ، بردار را با بردار جمع می کنیم.
مؤلفه های بردارها :
مؤلفه ی یک بردار تصویر یک بردار بر روی یک محور است.
مولفه های یک بردار برای به دست آوردن مولفه های (نرده ای) هر بردار و معدن ، در راستای محورهای مختصات، از انتهای بردار خط هایی بر محور های مختصات عمود می کنیم.
مؤلفه های بردار عبارت انداز :
که در آن زاویه میان محور x مثبت و بردار a است. علامت جبری یک نقطه جهت آن رادار روی محور مربوط نشان می دهد. با در دست داشتن مؤلفه های بردار ، می توان بزرگی سمتگیری آن را معین کرد:
و
مثال: هواپیمای کوچکی در یک روز ابری مسافت km215 را در جهت 22 درجه شرقی محور شمالی می پیماید.
هواپیما از نقطۀ آغاز حرکتش چه مسافتی را به سمت شمال و چه مسافتی را به سمت مشرق پیموده است؟
حل: دستگاه محورهای مختصات xy را طوری رسم می کنیم که در آن جهت مثبت محور x به سمت مشرق و جهت مثبت محور y به سمت شمال باشد، برای آسانی مبدأ مختصات را در محل فرودگاه در نظر می گیریم.
جهت بردار جابجایی هواپیما d ، از مبدأ مختصات به طرف مقصد است.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 9
تاریخچه هندسه
واژه انگلیسی Geometry ( هندسه ) از زبان یونانی ریشه گرفته است. این کلمه از دو کلمه «جئو»ٍ به معنای زمین و «متری» به معنای اندازه گیری تشکیل شده است.بنابراین هندسه اندازه گیری زمین است. مصریان اولیه نخستین کسانی بودند که اصول هندسه را کشف کردند. هر سال رودخانة نیل طغیان نموده و نواحی اطراف رودخانه راسیل فرا میگرفت. این عمل تمام علایم مرزی میان تقسیمات مختلف را از بین میبرد و لازم میشد دوباره هر کس زمین خود را اندازهگیری و مرزبندی نماید. آنها روشی از علامتگذاری زمینها با کمک پایهها و طنابها اختراع کردند. آنها پایهای را در نقطهای مناسب در زمین فرو میکردند، پایه دیگری در جایی دیگر نصب میشد و دو پایه توسط طنابی که مرز را مشخص میساخت به یکدیگر متصل میشدند.با دو پایه دیگر زمین محصور شده ، محلی برای کشت یا ساختمان سازی میگشت. با برآمدن یونانیان اطلاعات ریاضی قدم به مرحله ای علمی گذاشت.در آغاز تمام اصول هندسی ابتدایی بود. اما در سال 600 قبل از میلاد مسیح ، یک آموزگار یونانی به نام تالس، اصول هندسی را از لحاظ علمی ثابت کرد. تالس دلایل ثبوت برخی از فرضیهها را کشف کرد و آغازگر هندسة تشریحی بود. اما دانشمندی به نام اقلیدس که در اسکندریه زندگی میکرد ، هندسه را به صورت یک علم بیان نمود. وی حدود سال 300 قبل از میلاد مسیح ، تمام نتایج هندسی را که تا به حال شناخته بود ، گرد آورد و آنها را به طور منظم ، در یک مجموعة 13 جلدی قرار داد. این کتابها که اصول هندسه نام داشتند ، به مدت 2 هزار سال در سراسر دنیا برای مطالعه هندسه به کار می رفتند. براساس این قوانین ، هندسه اقلیدسی تکامل یافت. هر چه زمان می گذشت ، شاخه های دیگری از هندسه توسط ریاضیدانان مختلف ، توسعه می یافت. امروزه در بررسی علم هندسه انواع مختلف این علم را نظیر هندسة تحلیلی و مثلثات، هندسه غیر اقلیدسی و هندسه فضایی مطالعه می کنیم. خدمت بزرگی که یونانیان در پیشرفت ریاضیات انجام دادند این بود که آنان احکام ریاضی را به جای تجربه بر استدلال منطقی استوار کردند.قبل از اقلیدس، فیثاغورث( 572-500 ق.م ) و زنون ( 490 ق.م. ) نیز به پیشرفت علم ریاضی خدمت بسیار کرده بودند. در قرن دوم قبل از میلاد ریاضیدانی به نام هیپارک، مثلثات را اختراع کرد. وی نخستین کسی بود که تقسیم بندی معمولی بابلی ها را برای پیرامون دایره پذیرفت.به این معنی که دایره را به 360 درجه و درجه را به 60 دقیقه و دقیقه را به 60 قسمت برابر تقسیم نمود و جدولی براساس شعاع دایره به دست آورد که وترهای بعضی قوسها را به دست می داد و این قدیمی ترین جدول مثلثاتی است که تاکنون شناخته شده است. بعد از آن دانشمندان هندی موجب پیشرفت علم ریاضی شدند. در قرن پنجم میلادی آپاستامبا، در قرن ششم ، آریاب هاتا ، در قرن هفتم ،براهماگوپتا و در قرن نهم ،بهاسکارا در پیشرفت علم ریاضی بسیار مؤثر بودند.
هندسه تصویری :
فرض کنید دو صفحه و در فضا داریم که لزوماً موازی یکدیگر نیستند. در این صورت، برای به دست آوردن تصویر مرکزی به روی از مرکز مفروض که در یا واقع نیست، میتوان تصویر هر نقطه از را نقطهای چون از تعریف کرد که و روی یک خط راست گذرنده از قرار داشته باشند. همچنین میتوان تصویر موازی را به این طریق به دست آورد که خطهای تصویر کننده را موازی در نظر بگیریم. همینطور تصویر یک خط در واقع صفحه به روی خط دیگری چون در هم به صورت تصویر مرکزی از یک نقطه ، و هم به صورت تصویر موازی تعریف میشود. تبدیل یک شکل به شکل دیگر از طریق تصویر موازی یا مرکزی و یا به وسیله رشتهای متناهی از این تصویر کردنها، تبدیل تصویری نامیده میشود. هندسه تصویری صفحه یا خط عبارت از مجموعه آن گزارههای هندسی است که بر اثر تبدیلهای تصویری دلخواه شکلها تغییری در صدق آنها پدید نمیآید. در مقابل، هندسه متری به مجموعهای از گزارهها، راجعه به اندازههای شکلها، اطلاق میشود که فقط تحت حرکتهای صلب شکلها صادق میمانند. ..........................تصور کردن از یک نقطه......................................................................تصویرگری موازی به بعضی از ویژگیهای تصویری فوراً میتوان پیبرد. تصویر هر نقطه، یک نقطه است. به علاوه، تصویر هر خط راست، یک خط راست است زیرا اگر خط واقع در به روی صفحه تصویر شود، تقاطع با صفحه گذرنده از و ، خط راست خواهد بود. اگر نقطه و خط راست ملازم هم باشند. آنگاه پس از هر عمل تصویر، نقطه متناظر و خط متناظر نیز ملازم هم خواهند بود. پس ملازمت یک نقطه و یک خط تحت گروه تصویری ناورداست. این واقعیت، پیامدهای ساده ولی مهمی دارد. اگر سه یا تعداد بیشتری نقطه همخط باشند، یعنی ملازم با یک خط راست باشند، تصویرهای آنها نیز همخط خواهند بود. همچنین اگر سه یا تعداد بیشتری خط راست همرس باشند یعنی ملازم با یک نقطه باشند، تصویرهای آنها نیز خطهای راست همرسی خواهند بود. در حالی که این ویژگیهای ساده – ملازمت،همخطی، و همرسی – ویژگیهای تصویری (یعنی ویژگیهای ناوردا تحت عمل تصویر) هستند، اندازههای طول و زاویه، و نسبتهای چنین اندازههایی، عموماً بر اثر تصویر کردن تغییر میکنند. مثلثهای متساویالساقین یا متساویالاضلاع را میتوان به مثلثهای مختلفالاضلاع تصویر کرد. پس اگر چه «مثلث» مفهومی متعلق به هندسه تصویری است، «مثلث متساویالاضلاع» چنین نیست و فقط به هندسه متری تعلق دارد.
برسی و اثبات پنجمین اصل موضوع هندسه اقلیدسی
همانطور که میدانیم در هندسه اقلیدسی یکسری از مفاهیم اولیه نظیر خط و نقطه تعریف شده بود و پنج اصل موضوع آنرا به عنوان بدیهیات پذیرفته بودند و سایر قضایا را با استفاده از این اصول استنتاج میکردند . اما اصل پنجم چندان بدیهی بهنظر نمیرسید . بنابر اصل پنجم اقلیدس از یک نقطه خارج از یک خط ، یک خط و تنها یک خط میتوان موازی با خط مفروض رسم کرد . برخی از ریاضیدانان مدعی بودند که این اصل را میتوان بهعنوان یک قضیه ثابت کرد . در این راه بسیاری از ریاضیدانان تلاش زیادی کردند ، ولی نتیجهای نگرفتند .
اشکالات وارد بر هندسه اقلیدسی :
لازم به توضیح است که تمامی اصول و مفاهیم هندسه اقلیدسی تنها شامل نظریات خود اقلیدس نمیشود بلکه اکثرا مجموعهای جمع آوری شده از هندسه مصریها و بابلیها توسط اقلیدس است . هندسه اقلیدسی بر اساس پنج اصل موضوعه زیر شکل گرفته و طبقه بندی شده است :
اصل اول - از هر نقطه میتوان خط مستقیمی به هر نقطه دیگری کشید یا اینکه کوتاهترین فاصله مابین دو نقطه یک پاره خط مستقیم است .
اصل دوم - هر پاره خط مستقیم را میتوان روی همان خط بهطور نامحدود امتداد داد .
اصل سوم - میتوان دایرهای به هر نقطه دلخواه به عنوان مرکز آن و با شعاعی مساوی هر پاره خط رسم کرد .
اصل چهارم - همه زوایای قائمه با هم مساوی هستند .
اصل پنجم - از یک نقطه خارج یک خط ، یک و تنها یک خط میتوان موازی با خط مفروض رسم کرد .
طبق تعاریف فعلی " اصل پنجم اقلیدس که ایجاز سایر اصول را نداشت ، به هیچ وجه واجد صفت بدیهی نبود . در واقع این اصل بیشتر به یک قضیه شباهت داشت تا به یک اصل . بنابراین طبیعی بود که لزوم واقعی آن به عنوان یک اصل مورد سوال قرار گیرد . زیرا چنین تصور میشد که شاید بتوان آن را بهعنوان یک قضیه ، و نه یک اصل از سایر اصول استخراج کرد ، یا حداقل بهجای آن میتوان معادل قابل قبولتری قرار داد . در طول تاریخ بسیاری از ریاضیدانان از جمله خیام ، خواجه نصیرالدین توسی ، جان والیس ، لژاندر ، فور کوش بویوئی و ... تلاش کردند تا اصل پنجم اقلیدس را با استفاده از سایر اصول نتیجه بگیرند و آن را به عنوان یک قضیه اثبات کنند ، اما تمام این تلاشها بینتیجه بود و در اثبات دچار خطا میشدند و یا به نوعی همین اصل را در اثبات خود بکار میبردند . سرانجام دالامبر این وضع را افتضاح هندسه نامید ."
اما موضوع بسیار مهم این است که اشیا در دنیای فیزیکی با هندسه اقلیدسی سازگارند و هندسههای نااقلیدسی زیر مجموعهای از هندسه اقلیدسی محسوب میشوند به طور مثال یک مکعب را در نظر بگیرید که در فضای اقلیدسی ، از نظر هندسی کاملا اقلیدسی است و اگر کره محیط یا محاط آن را رسم کنیم داخل سطح کره با هندسه هذلولی و خارج سطح کره با هندسه بیضوی برسی و مطالعه میشود و اینک برای اثبات اصل پنجم هندسه اقلیدسی چه کاری میتوان انجام داد . در این مبحث به استناد اصول و مفاهیم تعریف شده در حیطه هندسه اقلیدسی سعی در ارایه راهکاری برای اثبات این اصل میکنیم .
خط یا پاره خط BC و نقطه A خارج از آن خط و هر دو را روی صفحه P در نظر میگیریم . روی خط BC نقطه دلخواه D را انتخاب و دایره دلخواه C1 را رسم میکنیم البته شعاع این دایره میبایست کمتر از AD باشد . بدیهی است که این دایره ، خط BC را در دو نقطه 1 و 2 قطع خواهد کرد ( یعنی این دایره را باید چنان رسم کنیم که روی صفحه P بوده و این دو تقاطع بوجود آیند ) . از نقطه A دایره C2 را به شعاع AD رسم میکنیم . بدیهی است که این دایره ، محیط دایره C1 را در دو نقطه 3 و 4 قطع خواهد کرد ( یعنی این دایره را باید چنان رسم کنیم که روی صفحه P بوده و این دو تقاطع بوجود آیند ) و چون سه نقطه از هر دایره ( مرکز و نقاط 3 و 4 ) بر روی صفحه P واقع شدهاند و این سه نقطه بر روی یک خط مستقیم نیستند ( برای اینکه محیط دایره C2 یک منحنی و کمان است ) ، مسلما این دو دایره بر روی صفحه P قرار گرفتهاند ، زیرا شرط اینکه دو شکل در روی یک صفحه قرار گیرند این است که دست کم سه نقطه از آنها بروی آن صفحه واقع شده باشند و البته این سه نقطه بر روی خط مستقیمی واقع نشده باشند . اینک شرط اینکه دو خط با هم موازی باشند این است که اولا هر دوی آنها روی یک صفحه باشند و دوما اینکه آن دو خط زوایای مساوی ( ترجیحا قائمه ) در تقاطع با خط مستقیم متقاطع سومی داشته باشند . اینک عمود AE بر خط BC را رسم میکنیم و خط یا پاره خط FG را چنان رسم میکنیم که اولا دایره C2 را در دو نقطه 5 و 6 قطع کرده و از نقطه A مرکز دایره عبور کرده و دوما بر AE عمود باشد . همانطور که میدانیم خط FG دست کم دو نقطه بر روی صفحه P داشته و بر روی صفحه P واقع شده و با خط BC موازی است . حال اگر خط FG را حول نقطه A و روی صفحه P به چرخانیم زاویه FAE بزرگتر و یا کوچکتر از زاویه BEA شده و شرط دوم موازی بودن دو خط منتفی میشود و اگر FG در نقطه A حول محور AE دوران داشته باشد ، خط FG دو تقاطع 5 و 6 با دایره C2 را از دست میدهد ، بنابراین خط FG از صفحه P خارج و شرط اول موازی بودن دو خط منتفی میشود . پس میتوان فهمید و نتیجه گرفت که خط FG انحصاری بوده و از یک نقطه خارج یک خط ، یک و تنها یک خط میتوان موازی با خط مفروض رسم کرد .
اینک این سوال مطرح میشود که چرا ما باید این اصل پنجم را ثابت کنیم ؟
علت بر این است که در هندسه اقلیدسی هر پاره خط مستقیمی میتواند بیانگر یک عدد باشد که بیانگر طول واقعی آن بوده و مربع و مکعب آن مقدار درستی در محاسبات ریاضی است ولی در هندسههای نااقلیدسی چنین نیست برای اینکه طول واقعی یک منحنی میتواند یک عدد باشد ولی این منحنی نمیتواند حتما و لزوما بیانگر همان عدد باشد ، برای اینکه انحنا یافته است و طول منحنی بیشتر از فاصله دو سر منحنی میباشد و این دو مقدار با هم نامساوی هستند . به طور مثال در هندسه اقلیدسی یک مربع به ضلع 1 متر بیانگر یک متر مربع است و یک مکعب به ضلع 1 متر بیانگر یک متر مکعب است ولی در هندسههای نااقلیدسی این مقدارها متفاوت است که نیاز به در نظر گرفتن ضریبی مبنی بر درصد خطا در محاسبات داریم . اصولا انحنا در هندسههای نااقلیدسی ، به طور کلی نسبت به یک خط راست اقلیدسی مشخص و نسبت به یک دایره با شعاع واحد واقع بر یک صفحه مسطح اقلیدسی سنجیده میشود و صحت هندسههای نااقلیدسی در گرو صحت هندسه اقلیدسی است .
در هندسه هذلولی مقادیر عددی مربوط به توان کمتر از مقادیر عددی مربوط به توان در هندسه بیضوی است .