لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 21
قطارهای تیلتینگ
چکیده
تکنولوژی قطارهای تیلتینگ، اپراتورهای راهآهنهای کشورهای مختلفی از قبیل ژاپن، آلمان، ایتالیا، سوئد و غیره را به خود جذب کرده است. با موفقیتی که در اثر این تکنولوژی در این کشورها به دست آمده، قرار است که به عنوان انتخابی مناسب برای سیستمهای به ثبت رسیدة حمل و نقل سرعت بالای ریلی همچون در سیستم ICE در آلمان و TGV در فرانسه ارائه گردد. نویسندگان این مقاله مسئله قطارهای تیلتینگ را به طور کلی شرح دادهاند و بعضی از مسائلی را که میبایست اپراتورهایی که میخواهند یک روش را برای به حرکت در آوردن جابجایی خدمات قطارهای سرعت بالا انتخاب کنند، مشخص کردهاند.
مقدمه
متداولاً برای پاسخ دادن به مسئله افزایش نیاز به کوتاه شدن زمان سفر، راهآهنها به زحمت سرمایه گذاریةایی بر روی بهینه سازی تراز بندی خط، علائم و همچنین ارائه سیستمهای کششی که قدرت بیشتری برای قطارهای سرعت بالا داشته باشند و همچنین ارائه ذخایر سوختی قویتر کردهاند و معمولاً چند عامل از این عوامل به صورت ترکیبی ارائه شده است.
برای مثالد ر فرانسه نیاز به زمان کوتاهتر در سفرها و همچنین شلوغی خط اصلی پاریس ـ دیجون ـ لیون باعث شد تا اولین مسیر (Ligne a Grande Vitesse) LGVکه مسیری است برای جابجایی تنها قطارهای سرعت بالای مسافری (Trains a Grande Vitesse) TGV طراحی شده و با سرعتی تا Km/h 270 حرکت میکنند. این پروژه خاص با موفقیت روبرو شد و آن هم به خاطر شرایط خاص آن بوده چرا که هزینه بسیار بالای چنین راه آهن جدید و سرعت بالایی از عهده یک کشور ثروتمند هم تقریباً خارج است.
روش دیگر برای یک خط مسافری سرعت بالا استفاده از قطارهای Maglev میباشد. که روشی است که در چندین کشور گسترده شده، خصوصاً در ژاپن و آلمان، اگر چه میتوان با استفاده از این سیستم به سرعت بالا و زمان کوتاهتری در سفر و همچنین مصرف نیروی نسبتاً کمتری رسید ولی به علت هزینه بالای اولیه و فقدان راحتی این سیستم نمیتوان از روش Maglev در سراسر دنیا استفاده کرد.
علاوه بر هزینه چشمگیر اولیه یک خط سرعت بالا، فقدان بازگشت سرمایه باعث شده است تا مشکلاتی در جذب سرمایه بخش خصوصی ایجاد شود و در بعضی موارد دیگر جدا کردن قطارها از لحاظ عملیاتی و زیرسازی خود مشکلاتی به حساب میآیند که در ساخت یک خط سرعت بالا دخیل هستند. این مشکلات اساسی، مسئولین راهآهن چندین کشور را متقاعد کرد تا بر روی قطارهای تیلتینگ سرمایه گذاری کنند تا بتوانند به آمالشان در زمینه کوتاه کردن زمان سفرها بدون اینکه مجبور باشند تمام مشکلات مالی و ساختمانی را حل کنند، برسند.
تاریخچه توسعه
کار بر روی قطارهای تیلتینگ در آلمان در دهه 1930 و در فرانسه در دهه 1950 آغاز شد. تحقیقات کلی بر روی این تکنولوژی تنها در اوایل دهه 1970 در کشورهای متفاوتی آغاز شد. خصوصاً در ایتالیا با Pendolino، در بریتانیا با قطار پیشرفته مسافری APT، در ژاپن با مجموعه قطارهای 381 و در کانادا با LRC.
در بریتانیا به حرکت در آوردن قطارهای تیلتینگ که به منظور کاهش زمان سفر بود بعد از بررسی امکانات مختلف انجام گرفت.
قطار APT-E به همراه E برای آزمایشاتی میباشد و توسط مرکز تحقیقات ریلی بریتانیا در دهه 1970 ساخته شد تا تکنولوژی کج شدن را آزمایش کنند و بعد از آن قطار APT-P به همراه P به عنوان نمونه قرار گرفت که در سال 1981 برای خدمات مسافری عرضه گردید. با وجود این با فقدان قابلیت اطمینان این قطار، سریعاً از سرویس خارج شد.
در ایتالیا یک نمونه از سیستم Pendolino در سال 1971 و بعد از آن در سال 1976 عرضه شد و این نمونه به عنوان قطار مسافری ETR-401 ارائه شد. بعد از این که کار و تحقیق بر روی قطارهای تیلتینگ در بریتانیا متوقف شد، این تکنولوژی به ایتالیا فروخته شد که بعد از اصلاحات بیشتری به همراه تکنولوژی تیلتینگ در ایتالیا منجر به ظهور قطار ETR-450 در سال 1981 گردید. نمونههای بیشتری از این سیستم در سالهای 1993 و بعد از آن همچون مجموعههای ETR-460-470-480 ارائه گردید.
تاریخچه عملیات کج شدن در کشورهای دیگر شبیه توسعه و ساخت در ایتالیا بوده است. در سالهای اخیر تکنولوژی کج شدن شهرت بیشتری پیدا کرده و باعث شد که بسیاری از اپراتورهای راهآهنی در اروپا، ژاپن و آمریکا به سوی آن جذب شوند.
اصل فیزیکی کج شدن
وقتی یک شیء با جرم m روی یک مسیر منحنی با سرعت V و شتاب مغناطیسی V2/R حرکت میکند،شتاب جانبی یا گریز از مرکز از طریق این شیء امتحان میشود که این شیء نسبتاً در خارج عمل می:ند اما به همراه شعاع انحناء، رفتار خمیدگی را حفظ میکند. همانطور که در Error، جایی که R شعاع مسیر خمیدگی میباشد، نشان داده شده است.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 16 صفحه
قسمتی از متن .doc :
مزایای ساختمان فلزی:
مقاومت زیاد: مقاومت قطعات فلزی زیاد بوده و نسبت مقاومت به وزن از مصالح بتن بزرگتر است ، به این علت در دهانه های بزرگ سوله ها و ساختمان های مرتفع ، ساختمانهائی که برزمینهای سست قرارمیگیرند ، حائز اهمیت فراوان میباشد .
خواص یکنواخت : فلز در کارخانجات بزرگ تحت نظارت دقیق تهیه میشود ، یکنواخت بودن خواص آن میتوان اطمینان کرد و خواص آن بر خلاف بتن با عوامل خارجی تحت تاثیر قرار نمی گیرد ، اطمینان در یکنواختی خواص مصالح در انتخاب ضریب اطمینان کوچک مؤثر است که خود صرفه جو یی در مصرف مصالح را باعث میشود .
دوام : دوام فولاد بسیار خوب است ، ساختمانهای فلزی که در نگهداری آنها دقت گردد . برای مدت طولانی قابل بهره برداری خواهند بود .
خواص ارتجاعی : خواص مفروض ارتجاعی فولاد با تقریبی بسیار خوبی مصداق عملی دارد . فولاد تا تنشهای بزرگی از قانون هوک بخوبی پیروی مینماید . مثلآ ممان اینرسی یک مقطع فولادی را میتوان با اطمینان در محاسبه وارد نمود . حال اینکه در مورد مقطع بتنی ارقام مربوطه چندان معین و قابل اطمینان نمی باشد .
شکل پذیری : از خاصیت مثبت مصالح فلزی شکل پذیری ان است که قادرند تمرکز تنش را که در واقع علت شروع خرابی است ونیروی دینامیکی و ضربه ای را تحمل نماید ،در حالیکه مصالح بتن ترد و شکننده در مقابل این نیروها فوق العاده ضعیف اند. یکی از عواملی که در هنگام خرابی ،عضو خود خبر داده و ازخرابی ناگهانی وخطرات ان جلوگیری میکند.
پیوستگی مصالح : قطعات فلزی با توجه به مواد متشکله آن پیوسته و همگن می باشد و ولی در قطعات بتنی صدمات وارده در هر زلزله به پوشش بتنی روی سلاح میلگرد وارد میگردد ، ترکهائی که در پوشش بتن پدید می آید ، قابل کنترل نبوده و احتمالا" ساختمان در پس لرزه یا زلزله بعدی ضعف بیشتر داشته و تخریب شود .
مقاومت متعادل مصالح،مقاومت : مصالح فلزی در کشش و فشار یکسان و در برش نیز خوب و نزدیک به کشش و فشار است .در تغییر وضع بارها، نیروی وارده فشاری ، کششی قابل تعویض بوده و همچنین مقاطعی که در بار گذاری عادی تنش برشی در انها کوچک است ، در بارهای پیش بینی شده ،تحت اثر پیچش و در نتیجه برش ناشی از ان قرار میگیرند. در ساختمانهای بتنی مسلح مقاومت بتن در فشار خوب ، ولی در کشش و یا برش کم است. پس در صورتی که مناطقی احتمالا تحت نیروی کششی قرار گرفته و مسلح نشده باشد تولید ترک و خرابی مینماید.
انفجار : در ساختمانهای بارهای وارده توسط اسکلت ساختمان تحمل شده ، از قطعات پرکننده مانند تیغه ها و دیواره ها استفاده نمی شود . نیروی تخریبی انفجار سطوح حائل را از اسکلت جدا می کند و انرژی مخرب آشکار میشود ، ولی ساختمان کلا" ویران نخواهد گردید . در ساختمانهایی بتن مسلح خرابی دیوارها باعث ویرانی ساختمان خواهد شد .
تقویت پذیری و امکان مقاوم سازی : اعضاء ضعیف ساختمان فلزی را در اثر محاسبات اشتباه ، تغییر مقررات و ضوابط ، اجراء و .... میتوان با جوش یا پرچ یا پیچ کردن قطعات جدید ، تقویت نمود و یا قسمت یا دهانه هائی اضافه کرد .
شرایط آسان ساخت و نصب : تهیه قطعات فلزی در کارخانجات و نصب آن در موقعیت ، شرایط جوی متفاوت با تمهیدات لازم قابل اجراء است .
سرعت نصب : سرعت نصب قطعات فلزی نسبت به اجراء قطعات بتنی مدت زمان کمتری می طلبد .
پرت مصالح : با توجه به تهیه قطعات از کارخانجات ، پرت مصالح نسبت به تهیه و بکارگیری بتن کمتر است .
وزن کم : میانگین وزن ساختمان فولادی را می توان بین 245 تا 390 کیلوگرم بر مترمربع و یا بین 80 تا 128 کیلوگرم بر مترمکعب تخمین زد ، درحالی که در ساختمانهای بتن مسلح این ارقام به ترتیب بین 480 تا 780 کیلوگرم برمترمربع یا 160 تا 250 کیلوگرم برمترمکعب می باشد .
اشغال فضا : در دو ساختمان مساوی از نظر ارتفاع و ابعاد ، ستون و تیرهای ساختمانهای فلزی از نظر ابعاد کوچکتر از ساختمانهای بتنی میباشد ، سطح اشغال یا فضا مرده در ساختمانهای بتنی بیشتر ایجاد میشود .
ضریب نیروی لرزه ای : حرکت زمین در اثر زلزله موجب اعمال نیروهای درونی در اجزاء ساختمان میشود ، بعبارت دیگر ساختمان برروی زمینی که بصورت تصادفی و غیر همگن در حال ارتعاش است ، بایستی ایستایی داشته و ارتعاش زمین را تحمل کند . در قابهای بتن مسلح که وزن بیشتر دارد ، ضریب نیروی لرزه ای بیشتر از قابهای فلزی است . تجربه نشان میدهد که خسارت وارده برساختمانهای کوتاه و صلب که در زمینهای محکم ساخته شده اند ، زیاد است . درحالیکه در ساختمانهای بلند و انعطاف پذیر ، آنهائی که در زمینهائی نرم ساخته شده اند ، صدمات بیشتری از زلزله دیده اند . بعبارت دیگر در زمینهای نرم که پریود ارتعاش زمین نسبتا" بزرگ است ، ساختمان های کوتاه نتایج بهتری داده اند و برعکس در زمینهای سفت با پریود کوچک ، ساختمان بلند احتمال خرابی کمتر دارند.
عکس العمل ساختمانها در مقابل حرکت زلزله بستگی به مشخصات خود ساختمان از نظر صلبیت و یا انعطاف پذیری آن دارد و مهمترین مشخصه ساختمان در رفتار آن در مقابل زلزله ، پریود طبیعی ارتعاش ساختمان است.
معایب ساختمانهای فلزی:
ضعف در دمای زیاد : مقاومت ساختمان فلزی با افزایش دما نقصان می یابد . اگر دکای اسکلت فلزی از 500 تا 600 درجه سانتی گراد برسد ، تعادل ساختمان به خطر می افتد .
خوردگی و فساد فلز در مقابل عوامل خارجی : قطعات مصرفی در ساختمان فلزی در مقابل عوامل جوی خورده شده و از ابعاد آن کاسته میشود و مخارج نگهداری و محافظت زیاد است .
تمایل قطعات فشاری به کمانش : با توجه به اینکه قطعات فلزی زیاد و ابعاد مصرفی معمولا" کوچک است ، تمایل به کمانش در این قطعات یک نقطه ضعف بحساب می رسد .
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 21
قطارهای تیلتینگ
چکیده
تکنولوژی قطارهای تیلتینگ، اپراتورهای راهآهنهای کشورهای مختلفی از قبیل ژاپن، آلمان، ایتالیا، سوئد و غیره را به خود جذب کرده است. با موفقیتی که در اثر این تکنولوژی در این کشورها به دست آمده، قرار است که به عنوان انتخابی مناسب برای سیستمهای به ثبت رسیدة حمل و نقل سرعت بالای ریلی همچون در سیستم ICE در آلمان و TGV در فرانسه ارائه گردد. نویسندگان این مقاله مسئله قطارهای تیلتینگ را به طور کلی شرح دادهاند و بعضی از مسائلی را که میبایست اپراتورهایی که میخواهند یک روش را برای به حرکت در آوردن جابجایی خدمات قطارهای سرعت بالا انتخاب کنند، مشخص کردهاند.
مقدمه
متداولاً برای پاسخ دادن به مسئله افزایش نیاز به کوتاه شدن زمان سفر، راهآهنها به زحمت سرمایه گذاریةایی بر روی بهینه سازی تراز بندی خط، علائم و همچنین ارائه سیستمهای کششی که قدرت بیشتری برای قطارهای سرعت بالا داشته باشند و همچنین ارائه ذخایر سوختی قویتر کردهاند و معمولاً چند عامل از این عوامل به صورت ترکیبی ارائه شده است.
برای مثالد ر فرانسه نیاز به زمان کوتاهتر در سفرها و همچنین شلوغی خط اصلی پاریس ـ دیجون ـ لیون باعث شد تا اولین مسیر (Ligne a Grande Vitesse) LGVکه مسیری است برای جابجایی تنها قطارهای سرعت بالای مسافری (Trains a Grande Vitesse) TGV طراحی شده و با سرعتی تا Km/h 270 حرکت میکنند. این پروژه خاص با موفقیت روبرو شد و آن هم به خاطر شرایط خاص آن بوده چرا که هزینه بسیار بالای چنین راه آهن جدید و سرعت بالایی از عهده یک کشور ثروتمند هم تقریباً خارج است.
روش دیگر برای یک خط مسافری سرعت بالا استفاده از قطارهای Maglev میباشد. که روشی است که در چندین کشور گسترده شده، خصوصاً در ژاپن و آلمان، اگر چه میتوان با استفاده از این سیستم به سرعت بالا و زمان کوتاهتری در سفر و همچنین مصرف نیروی نسبتاً کمتری رسید ولی به علت هزینه بالای اولیه و فقدان راحتی این سیستم نمیتوان از روش Maglev در سراسر دنیا استفاده کرد.
علاوه بر هزینه چشمگیر اولیه یک خط سرعت بالا، فقدان بازگشت سرمایه باعث شده است تا مشکلاتی در جذب سرمایه بخش خصوصی ایجاد شود و در بعضی موارد دیگر جدا کردن قطارها از لحاظ عملیاتی و زیرسازی خود مشکلاتی به حساب میآیند که در ساخت یک خط سرعت بالا دخیل هستند. این مشکلات اساسی، مسئولین راهآهن چندین کشور را متقاعد کرد تا بر روی قطارهای تیلتینگ سرمایه گذاری کنند تا بتوانند به آمالشان در زمینه کوتاه کردن زمان سفرها بدون اینکه مجبور باشند تمام مشکلات مالی و ساختمانی را حل کنند، برسند.
تاریخچه توسعه
کار بر روی قطارهای تیلتینگ در آلمان در دهه 1930 و در فرانسه در دهه 1950 آغاز شد. تحقیقات کلی بر روی این تکنولوژی تنها در اوایل دهه 1970 در کشورهای متفاوتی آغاز شد. خصوصاً در ایتالیا با Pendolino، در بریتانیا با قطار پیشرفته مسافری APT، در ژاپن با مجموعه قطارهای 381 و در کانادا با LRC.
در بریتانیا به حرکت در آوردن قطارهای تیلتینگ که به منظور کاهش زمان سفر بود بعد از بررسی امکانات مختلف انجام گرفت.
قطار APT-E به همراه E برای آزمایشاتی میباشد و توسط مرکز تحقیقات ریلی بریتانیا در دهه 1970 ساخته شد تا تکنولوژی کج شدن را آزمایش کنند و بعد از آن قطار APT-P به همراه P به عنوان نمونه قرار گرفت که در سال 1981 برای خدمات مسافری عرضه گردید. با وجود این با فقدان قابلیت اطمینان این قطار، سریعاً از سرویس خارج شد.
در ایتالیا یک نمونه از سیستم Pendolino در سال 1971 و بعد از آن در سال 1976 عرضه شد و این نمونه به عنوان قطار مسافری ETR-401 ارائه شد. بعد از این که کار و تحقیق بر روی قطارهای تیلتینگ در بریتانیا متوقف شد، این تکنولوژی به ایتالیا فروخته شد که بعد از اصلاحات بیشتری به همراه تکنولوژی تیلتینگ در ایتالیا منجر به ظهور قطار ETR-450 در سال 1981 گردید. نمونههای بیشتری از این سیستم در سالهای 1993 و بعد از آن همچون مجموعههای ETR-460-470-480 ارائه گردید.
تاریخچه عملیات کج شدن در کشورهای دیگر شبیه توسعه و ساخت در ایتالیا بوده است. در سالهای اخیر تکنولوژی کج شدن شهرت بیشتری پیدا کرده و باعث شد که بسیاری از اپراتورهای راهآهنی در اروپا، ژاپن و آمریکا به سوی آن جذب شوند.
اصل فیزیکی کج شدن
وقتی یک شیء با جرم m روی یک مسیر منحنی با سرعت V و شتاب مغناطیسی V2/R حرکت میکند،شتاب جانبی یا گریز از مرکز از طریق این شیء امتحان میشود که این شیء نسبتاً در خارج عمل می:ند اما به همراه شعاع انحناء، رفتار خمیدگی را حفظ میکند. همانطور که در Error، جایی که R شعاع مسیر خمیدگی میباشد، نشان داده شده است.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 36 صفحه
قسمتی از متن .doc :
مزایای نشر الکترونیکی
بسیاری از امتیازاتی که برای نشر الکترونیکی بر می شمارند ، صرفاً با مقایسه آن با نشر چاپی قابل درک است . وجود این امتیازات ، کاملاً نسبی هستند و به عواملی چون نرم افزار ، قالبهای ذخیره اطلاعات ، زیر ساختهای اطلاعاتی ‚ و مانند بستگی دارد .
« واریان » مزایای نشر الکترونیکی را در زیر چهار عنوان اصلی ، این چنین بر می شمارد ؛
الف : صرفه جویی در فضای کتابخانه ها : کتابهای قرن گذشته امروز به راحتی قابل خواندن هستند ؛ اما دیسکهای فلاپی که ده سال قبل تهیه شده اند ممکن است امروز قابل خواندن نباشند . س در آرشیوهای الکترونیکی ، نیاز به تهیه پشتیبان از اطلاعات آنها داریم تا بنا به ضرورت و با استفاده از ابزار رابط تبدیل ، به رسانه جدید و قالب نو تبدیل شوند . همه این فعالیتها هزینه بر هستند – البته کتابخانه های سنتی همه هزینه بر هستند ؛ اما د رمجموع ، تردیدی نیست که کتابخانه های الکترونیکی هزینه های کتابخانه های سنتی را کاهش می دهند ، این موضوع به ویژه از بعد معضلات مربوط به گسترش فضای کتابخانه برای مجموعه سازی و ذخیره مدارک ، قابل توجه است .
ب .نظارت : نظارت بر استفاده از رسانه الکترونیکی بسییار آسانتر است . فرمهای باز خورد ، توجه به علائق کاربران ، و صرفه اقتصادی استفاده از رسانه الکترونیکی ، در تصمیم های مربوط به تهیه منابع و سیاستگذاری نشر تاثیردارند . ویژگی نظارت د رنشر الکترونیکی ، نوع ارتباط بین استفاده کنندگان و ارائه دهندگان خدمات ناشر را دچار تحول می کند .
ج . جستجو : جستجو در رسانه الکترونیکی آسانتر و سریعتر است ؛ منابع از طریق فرامتن به سهولت قابل نمایش هستند .
د . پشتیبانی : هزینه ذخیره و انتقال اطلاعات در رسانه الکترونیکی کم است و به همین دلیل ، پشتیبانی نیز سهل تر و کم هزینه تر است . همین نکته می تواند بر کیفیت ارتباط علمی تاثصیر مثبت بگذارد .
عناوینی که « واریان » بدانها اشاره می کند ، گر چه به نوعی نسبتاً جامع بیانگر مزایای نشر در محیط الکترونیکی هستند ، اما برای درک بهتر و برای ملموس کردن این مزایا ، نیازمند بسط آنها هستیم . در یک جمع بندی کلی ، مزایای نشر الکترونیکی را می توان به شرح زیر دسته بندی کرد :
پس از انتشار ، سرعت انتقال در محیط الکترونیکی بسیار زیاد است ؛
هزینه انتشار متون کمتر است ؛
سرعت باز خورد مطالب بیشتر است ؛
فرایند انتشار مراحل کوتاهتر و کم هزینه تر است ؛
دسترسی کاربران از نقاط دور ، آسان و سریعتر است ؛
امکان مقایسه متون مشابه با سرعت بیشتر ، زمان و هزینه کمتر میسر است؛
امکان پرهیز از دوباره کاری تسهیل می شود ؛
کاوش در متون الکترونیکی از سرعت بالاییی برخوردار است ؛
امکان تدوین و طبقه بندی منابع الکترونیکی د رحوزه های گوناگون علوم در حجم بالا و مقیاس وسیع ، و با سرعت اندک فراهم می گردد ؛
امکان مباحثه و مذاکره د رباره مطالب منتشر شده ، به صورت همزمان (فردی و گروهی ) فراهم می گردد ؛
پدید آورندگان میتوانند مستقیماً اقدام به انتشار مطالب خود کنند ؛
اشتراک منابع اطلاعاتی مفهوم وسیعتر و واقعی تری می یابد ؛
قالب بندی متون و تغییر شکل آن به تناسب سلیقه کاربر امکان پذیر است ؛
دسترسی به مفاهیم و موضوع های مرتبط د رحوزه های گوناگون فراهم می گردد ؛
محدودیتهای چاپ مطالب ، بویژه مقالات علمی – که انتشار آنها در مجلات بسیار دشوار و مستلزم فرایند طولانی بود – از میان می رود ؛
انحصارات – هر چند نه در سطح وسیع – کمرنگ تر می شود ؛
برخی محدودیت های دسترسی به منابع اطلاعات – که د رنشر سنتی وجود دارد – از جمله محدودیت های زمانی و مکانی و وجود شرایط خاص ، رنگ می بازند ؛
بازبینی ، ویرایش و اصلاح مطالب ، آسانتر و سریعتر است ؛
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 21
قطارهای تیلتینگ
چکیده
تکنولوژی قطارهای تیلتینگ، اپراتورهای راهآهنهای کشورهای مختلفی از قبیل ژاپن، آلمان، ایتالیا، سوئد و غیره را به خود جذب کرده است. با موفقیتی که در اثر این تکنولوژی در این کشورها به دست آمده، قرار است که به عنوان انتخابی مناسب برای سیستمهای به ثبت رسیدة حمل و نقل سرعت بالای ریلی همچون در سیستم ICE در آلمان و TGV در فرانسه ارائه گردد. نویسندگان این مقاله مسئله قطارهای تیلتینگ را به طور کلی شرح دادهاند و بعضی از مسائلی را که میبایست اپراتورهایی که میخواهند یک روش را برای به حرکت در آوردن جابجایی خدمات قطارهای سرعت بالا انتخاب کنند، مشخص کردهاند.
مقدمه
متداولاً برای پاسخ دادن به مسئله افزایش نیاز به کوتاه شدن زمان سفر، راهآهنها به زحمت سرمایه گذاریةایی بر روی بهینه سازی تراز بندی خط، علائم و همچنین ارائه سیستمهای کششی که قدرت بیشتری برای قطارهای سرعت بالا داشته باشند و همچنین ارائه ذخایر سوختی قویتر کردهاند و معمولاً چند عامل از این عوامل به صورت ترکیبی ارائه شده است.
برای مثالد ر فرانسه نیاز به زمان کوتاهتر در سفرها و همچنین شلوغی خط اصلی پاریس ـ دیجون ـ لیون باعث شد تا اولین مسیر (Ligne a Grande Vitesse) LGVکه مسیری است برای جابجایی تنها قطارهای سرعت بالای مسافری (Trains a Grande Vitesse) TGV طراحی شده و با سرعتی تا Km/h 270 حرکت میکنند. این پروژه خاص با موفقیت روبرو شد و آن هم به خاطر شرایط خاص آن بوده چرا که هزینه بسیار بالای چنین راه آهن جدید و سرعت بالایی از عهده یک کشور ثروتمند هم تقریباً خارج است.
روش دیگر برای یک خط مسافری سرعت بالا استفاده از قطارهای Maglev میباشد. که روشی است که در چندین کشور گسترده شده، خصوصاً در ژاپن و آلمان، اگر چه میتوان با استفاده از این سیستم به سرعت بالا و زمان کوتاهتری در سفر و همچنین مصرف نیروی نسبتاً کمتری رسید ولی به علت هزینه بالای اولیه و فقدان راحتی این سیستم نمیتوان از روش Maglev در سراسر دنیا استفاده کرد.
علاوه بر هزینه چشمگیر اولیه یک خط سرعت بالا، فقدان بازگشت سرمایه باعث شده است تا مشکلاتی در جذب سرمایه بخش خصوصی ایجاد شود و در بعضی موارد دیگر جدا کردن قطارها از لحاظ عملیاتی و زیرسازی خود مشکلاتی به حساب میآیند که در ساخت یک خط سرعت بالا دخیل هستند. این مشکلات اساسی، مسئولین راهآهن چندین کشور را متقاعد کرد تا بر روی قطارهای تیلتینگ سرمایه گذاری کنند تا بتوانند به آمالشان در زمینه کوتاه کردن زمان سفرها بدون اینکه مجبور باشند تمام مشکلات مالی و ساختمانی را حل کنند، برسند.
تاریخچه توسعه
کار بر روی قطارهای تیلتینگ در آلمان در دهه 1930 و در فرانسه در دهه 1950 آغاز شد. تحقیقات کلی بر روی این تکنولوژی تنها در اوایل دهه 1970 در کشورهای متفاوتی آغاز شد. خصوصاً در ایتالیا با Pendolino، در بریتانیا با قطار پیشرفته مسافری APT، در ژاپن با مجموعه قطارهای 381 و در کانادا با LRC.
در بریتانیا به حرکت در آوردن قطارهای تیلتینگ که به منظور کاهش زمان سفر بود بعد از بررسی امکانات مختلف انجام گرفت.
قطار APT-E به همراه E برای آزمایشاتی میباشد و توسط مرکز تحقیقات ریلی بریتانیا در دهه 1970 ساخته شد تا تکنولوژی کج شدن را آزمایش کنند و بعد از آن قطار APT-P به همراه P به عنوان نمونه قرار گرفت که در سال 1981 برای خدمات مسافری عرضه گردید. با وجود این با فقدان قابلیت اطمینان این قطار، سریعاً از سرویس خارج شد.
در ایتالیا یک نمونه از سیستم Pendolino در سال 1971 و بعد از آن در سال 1976 عرضه شد و این نمونه به عنوان قطار مسافری ETR-401 ارائه شد. بعد از این که کار و تحقیق بر روی قطارهای تیلتینگ در بریتانیا متوقف شد، این تکنولوژی به ایتالیا فروخته شد که بعد از اصلاحات بیشتری به همراه تکنولوژی تیلتینگ در ایتالیا منجر به ظهور قطار ETR-450 در سال 1981 گردید. نمونههای بیشتری از این سیستم در سالهای 1993 و بعد از آن همچون مجموعههای ETR-460-470-480 ارائه گردید.
تاریخچه عملیات کج شدن در کشورهای دیگر شبیه توسعه و ساخت در ایتالیا بوده است. در سالهای اخیر تکنولوژی کج شدن شهرت بیشتری پیدا کرده و باعث شد که بسیاری از اپراتورهای راهآهنی در اروپا، ژاپن و آمریکا به سوی آن جذب شوند.
اصل فیزیکی کج شدن
وقتی یک شیء با جرم m روی یک مسیر منحنی با سرعت V و شتاب مغناطیسی V2/R حرکت میکند،شتاب جانبی یا گریز از مرکز از طریق این شیء امتحان میشود که این شیء نسبتاً در خارج عمل می:ند اما به همراه شعاع انحناء، رفتار خمیدگی را حفظ میکند. همانطور که در Error، جایی که R شعاع مسیر خمیدگی میباشد، نشان داده شده است.