دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

تحقیق درباره خسارات ناشی از وقوع زلزله

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 10

 

خسارات نوین ناشی از زلزله

در اثر توسعه اقتصادی سالیان گذشته، خصوصاً 20 سال اخیر، کشورهای در حال توسعه به طور چشمگیری تغییر نموده اند. تمرکز جمعیت و اطلاعات در شهرهای بزرگ به طور محسوسی پیشرفت داشته است. امکانات جدیدی که تاکنون در مورد یک زلزله قوی تجربه شده اند، در حال رشد و توسعه است: آسمان خراشها، ساختمانهای با سیستم های هوشیار، پلهای معلق عظیم، بزرگراههای زیرزمینی، مراکز خرید زیرزمینی، مترو، انواع و اقسام کامپیوترها و … در نتیجه این پیشرفتها وضعیت و آثار ناشی از خرابی های زلزله هم تغییراتی نموده است.

مقدمه ای بر توسعه شهرها و افزایش خسارات اقتصادی

جالب است بدانیم که اکثریت مردم جهان معتقدند هر چه زمان پیش می رود زلزله های بیشتر و قویتری روی می دهد. این عقیده گرچه از نظر فیزیکی و توجیه وقوع زلزله ها ممکن است منطق درستی نداشته باشد؛ لیکن با توجه به سه مطلب زیر بطور منطقی درست می باشد:

الف- ظهور شهرها و شهرکهای جدید در مناطق مختلف، که این امر باعث می شود تا زلزله هایی که قبلاً در بیابان و در مناطق عاری از سکنه روی می دادند، این بار پس از دوره بازگشت خود در منطقه ای روی دهند که تاسیسات مختلفی در آن درست شده و جمع زیادی در آن زندگی می کنند.

ب- گسترش جمعیت و تاسیسات شهری که خود عامل دیگر افزایش خسارات و تلفات می باشد. هر چه شهرها مدرن تر شوند، خسارات بیشتری از نظر ارزش بوجود می آید. مثلاً در سال 1995 شهر مدرنی مانند کوبه ژاپن و شهرهای حومه آن بواسطه خسارت (مستقیم و غیرمستقیم) تاسیسات پیشرفته آنها متحمل هزینه بسیار سنگینی بالغ بر 150 میلیارد دلار آمریکا گردید.

ج- پیشرفت دانش بشر در زمینه لرزه شناسی قادرست لرزه های زیادی در اقصی نقاط جهان ثبت نماید، در حالیکه در قدیم خیلی از زلزله ها ثبت نمی شد. لذا به نظر می رسد که زلزله ها افزایش یافته اند.

تقسیم بندی خسارات اقتصادی

پس از وقوع زلزله، خسارات اقتصادی را به طور کلی بهتر است به دو قسمت تقسیم نمود:

خسارات مستقیم

اینگونه خسارات بطور عمومی عبارتند از خسارات ناشی از خراب شدن ساختمانها و تاسیسات، جاده ها، پلها، راه آهن، لوله های آب و گاز، خطوط برق و مخابرات و تاسیسات آنها. خسارت مستقیم تقریباً هزینه آن چیزی است که در اثر خرابی از دست رفته است و از سرویس خارج می گردد. این مثل آن است که بطور مستقیم بایستی برای برگشت مجدد آنها هزینه نمود.

خسارت غیرمستقیم

وقتی تاسیسات و ساختمانها آسیب ببینند، نمی توانند مورد بهره برداری قرار گیرند. عدم امکان بهره برداری از آنچه که در زلزله آسیب دیده است، قطع گردد. در واقع در خسارتهای غیرمستقیم عایدی ناشی از بهره برداری قطع می گردد که می تواند رقم بسیار قابل ملاحظه ای و گاهی اوقات برابر یا حتی بیشتر از خسارات مستقیم شود. معطل ماندن سرمایه گذاریها، فرار سرمایه ها از مناطق آسیب دیده، بیکاریها، ورشکستگیها و نظایر آنها از جمله مهمترین مصادیق خسارات غیرمستقیم هستند.

خسارات اقتصادی و آسیب های وابسته

تاکنون، تمامی کوشش ها مصروف کاهش دادن تلفات جانی تا حداقل میزان ممکن، در یک زلزله بوده است. در واقع این امر هنوز هم مساله اساسی محسوب می شود و وضعیت کنونی شهرهای بزرگ، که شرایط پیچیده ای دارند، از عوامل آن است. امروزه در کلان شهرها حجم بالایی از پول و اطلاعات، صرف تهیه و تنظیم بهترین مکانیسم ممکن می شود. مکانیسمی که در آن نه تنها حداقل تلفات جانی رخ دهد، بلکه میزان آسیبهای اقتصادی نیز به حداقل ممکن کاهش یابد.

خسارات ناشی از عدم بهره برداری

ماشینهایی که از آنها جهت تنظیم و اداره مکانیسم های مذکور استفاده می شود، به راحتی خراب می شوند و تعمیرات مجدد آنها به راحتی امکان پذیر نیست. در مورد وسایل الکتریکی که اخیرا ساخته می شود، اگر یک قسمت وسیله خراب شود، بجای تعویض کل وسیله می توان آن قسمت را با یک قسمت سالم تعویض و جابجا نمود. اما در مورد شهرها چنین نیست و نمی توان قسمتهای مختلف شهری را به راحتی عوض نمود. یکی از مشکلاتی که در مورد خسارات ناشی از زلزله وجود دارد، جابجایی گسل ها و آثار آن برای یک شهر می باشد. در این باره می توان گفت که حتی اگر جان افراد به خطر نیفتد و کسی هم کشته نشود، اما آثار و خسارات وابسته به آن در شهری مانند تهران که دارای جایگاه مهمی از نظر موقعیت کلیدی آن در منطقه می باشد، (از نظر ایجاد مشکلات ترافیکی و یا ارتباطاتی) در حدی است که منجر به فلج شدن امور شهری می گردد و عدم بهره برداری از منابع انسانی و مادی می گردد.

حتی اگر زمانی برسد که قادر باشیم زمان وقوع زلزله را پیش بینی نماییم، آسیب های فیزیکی امری غیرقابل اجتناب است. به دلیل تمرکز بالای جمعیت در یک شهر تعداد آسیب های معمولی ممکن است به هزاران برسد. همچنین هزینه ها و خسارات اقتصادی ناشی از تعمیر ساختمانها و یا وسایل آسیب دیده ممکن است بسیار زیاد گردد. در ابر شهرهایی همچون توکیو و تهران مجموعه های نفیس و گرانقیمت و موزه های زیادی از اشیاء باارزش وجود دارد که احتمال آسیب دیدگی آنها هم وجود دارد.

پیشتر، ژاپنیها این تصور را داشتند که خسارات اقتصادی هر قدر هم که بزرگ شد در صورتی که تلفات جانی در پی نداشته باشند و افراد بتوانند زنده بمانند، قابل تحمل و قبول هستند. همچنین در گذشته نگرش ساده ای نسبت به بازسازی وجود داشت. اما از آنجا که هم اکنون ژاپن یک کشور صنعتی محسوب می شود، میزان خسارات اقتصادی ناشی از زلزله بسیار مهم می باشند.



خرید و دانلود تحقیق درباره خسارات ناشی از وقوع زلزله


تحقیق/ پایداری سدهای خاکی در برابر زلزله

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 13

 

پایداری سدهای خاکی در برابر زلزله

مقدمه

آسیب پذیری سدهای خاکی در برابر زلزله از دیرباز مورد توجه بوده زیرا مکرار شاهد ناپایداری آنها در هنگام زلزله های قوی و مخرب بوده ایم . در آمریکا در اواخر دهه 1950توجه بیشتری به پایداری لرزه ای سدهای خاکی معطوف شد. نمونه ای از خرابی سدهاوشیروانی های خاکی در زلزله را می توان در موارد زیر یافت؛ انهدام مخزن بلودین هیلز[1] در لوس انجلس ،انهدام شیروانی سد شفیلد [2] در اثر زلزله نه چندان قوی سانتا باربارا[3] در سال 1922 و انهدام شیروانی بالا دست سان فرناندو [4] در 1971.

حالتهای شکست

انواع آسیبهای احتمالی یک سد خاکی بهنگام زلزله با توجه به شکل 1 به شرح زیراست :

الف.شکست و ریزش سد به علت وجودگسل اصلی در زیر قاعده سد.

باید توجه داشت که معمولا گسلها از میان دره ها ی آبخیز عبور می کنند و اتفاقا مکان مناسب برای احداث سد نیز در همین دره ها است.البته همه گسلها فعال ومخرب نمی باشند.

ب.گسیختگی دامنه سد دراثر جنبش زمین (لغزش شیروانی ها یبالا دست و پایین دست )

پ.از بین رفتن ارتفاع آزاد در اثر نشست نا متعادل در منطقه

ت.از بی رفتن ارتفاع آزاد در اثر لغزش دامنه ها وعریض شدن سد

ث.لغزش سد روی لایه های ضعیف

ج.سر ریزشدن آب از روی سد در اثر ایجاد امواج سطح آب

چ.شکست سرریز یا لوله ها خروجی آب به علتهای مختلف ،و نیزانسداد لوله های خروجی و سر ریزو یا زهکشها.

همچنین تخریب سد خاکی می تواند بر اثر عوامل زیر باشد :

o       سرریزشدن آب از روی سد در اثر زمین لغزه ای ناگهانی در مخزن .

o       روانگرایی ماسه های اشباع با تراکم پایین ،و یا از بین رفتن مقاومت رسهای اشباع در اثر ارتعاش زلزله؛زیرا امواج فشار ناشی از زلزله در وهله اول به آب منفذی وارد می شودو ناگهان از تنش موثر خاک کاسته وموجب کم شدن مقاومت برشی میگردد.

ویژگی های دینامیکی سدهای خاکی

جنس خاک پی سد نقش مهمی بر پایداری آن دارد.انهدام سد،روی سنگهای سخت ومحکم کمتر از سنگهای نرم است و بدترین حالت آن است که سد بر روی زمینهای رسی تحکیم نشده احداث شود (مانند سدهایی که روی آبرفتهای ضخیم رودخانه ای بنا شده اند).دامنه امواج ارتجاعی زلزله به هنگام عبور از لایه های سست ،زیاد شده و از سرعت امواج کاسته می شود.

در زلزله های شدید ،دامنه نوسانات به 30تا60سانتیمتر ،و طول امواج به 15تا30مترمی رسد.نشست خاکهای ریزدانه بیش از خاکهای دانه ای(شنی)است.

ماسه با تراکم کم و سست در زیر آبهای زیرزمینی در اثر افزلیش فشار منفذی روان می شوند.با کاهش سرعت امواج ،دامنه نوسانات زیاد می شود .سرعت متوسط امواج در مصالح مختلف تفاوت دارد .در جدول الف سرعت امواج زلزله برای برخی مصالح خاکی درج شده است.

جدول الف.سرعت امواج زلزله در محیطهای مختلف

مصالح

سرعت(متر بر ثانیه)

ماسه سست

شن سست

رسوبات دریایی

شن متراکم

شن سیمان دار (بهم چسبیده)

ماسه سنگ

450-600

600-750

1000-1150

1050-1500

1500-1950

2400-2850

استهلاک

می دانیم که استهلاک موجب کاهش نیروهای زلزله می شود زیراانرژی حاصل از زلزله را جذب نموده و مستهلک می سازد .خاصیت استهلاک ناشی از عوامل مختلفی است مانند:رفتار پسماند ،استهلاک مکانیکی ناشی از لغزش در سطح ،لزجت داخلی ذرات ،و مقاومت (لزجت)خارجی آب یا هوا .

درخاکهای دانه ای [5] استهلاک ناشی از اصطکاک از عوامل دیگر مهمتر است .

.ضریب استهلاک سدهای خاکی بر حسب نوع مصالح مصرفی متفاوت است و می تواند بین 10%تا20%تغییر کند.فرکانس طبیعی اکثر خاکها بین20تا30هرتز است و با افزایش مقاومت خاک زیاد می شود.

محاسبه نیروهای وارد بر سد به روش استاتیکی

در روش استاتیکی ،نیروی زلزله به صورت یک نیروی افقی ثابت در برابردرصدی از وزن سد به آن وارد شده و آنگاه ضریب اطمینان سطوح احتمالی لغزش به روشهای مختلف (فلینیوس،بیشاپ،روش گوه)محاسبه می گردد.کمترین ضریب اطمینان با سطح لغزش بحرانی متناظر خواهد بود.در روش فلینیوس سطح لغزش به صورت بخشی از یک دایره در نظر گرفته شده و قطاع ناقصی از یک شیروانی خاکی بر روی سطح مزبور ،و حول مرکزاختیاری این دایره می لغزد ،شیروانی به لایه هایی قائم و موازی تقسیم شده و نیروی زلزله لایه nام به صورت دونیروی افقی بیان می شود . یکی مربوط به قسمت خشک و دیگری مربوط به قسمت مرطوب است.

ضریب زلزله

در آمریکا معمولا ضریب زلزله سذهای خاکی را بین 05/0تا15/0 در نظر گرفته و نیروی زلزله را به صورت استاتیکی به سد اعمال می کنند.آیین نامه ژاپنی کمیته ملی ژاپنی ساخت سدهای بزرگ در سال 1957ضریب زلزله را بین 12/0تا25/0تعیین نموده است .

البته باید دانست که نیروی زلزله واقعی می تواند بسیار بزرگتر از مقادیر اختیار شده در روش استاتیکی باشد .علاوه بر این به علت حرکتهای ارتعاشی سد،توزیع شتاب در ارتفاع سد بر خلاف فرضیات بخش قبلی به صورت یکنواخت نبوده و هر قدر به سمت تاج سد نزدیک شویم شتاب افزایش می یابد. محاسبات نشان می دهد که مقادیر



خرید و دانلود تحقیق/ پایداری سدهای خاکی در برابر زلزله


تحقیق پایداری سدهای خاکی در برابر زلزله

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 13

 

پایداری سدهای خاکی در برابر زلزله

مقدمه

آسیب پذیری سدهای خاکی در برابر زلزله از دیرباز مورد توجه بوده زیرا مکرار شاهد ناپایداری آنها در هنگام زلزله های قوی و مخرب بوده ایم . در آمریکا در اواخر دهه 1950توجه بیشتری به پایداری لرزه ای سدهای خاکی معطوف شد. نمونه ای از خرابی سدهاوشیروانی های خاکی در زلزله را می توان در موارد زیر یافت؛ انهدام مخزن بلودین هیلز[1] در لوس انجلس ،انهدام شیروانی سد شفیلد [2] در اثر زلزله نه چندان قوی سانتا باربارا[3] در سال 1922 و انهدام شیروانی بالا دست سان فرناندو [4] در 1971.

حالتهای شکست

انواع آسیبهای احتمالی یک سد خاکی بهنگام زلزله با توجه به شکل 1 به شرح زیراست :

الف.شکست و ریزش سد به علت وجودگسل اصلی در زیر قاعده سد.

باید توجه داشت که معمولا گسلها از میان دره ها ی آبخیز عبور می کنند و اتفاقا مکان مناسب برای احداث سد نیز در همین دره ها است.البته همه گسلها فعال ومخرب نمی باشند.

ب.گسیختگی دامنه سد دراثر جنبش زمین (لغزش شیروانی ها یبالا دست و پایین دست )

پ.از بین رفتن ارتفاع آزاد در اثر نشست نا متعادل در منطقه

ت.از بی رفتن ارتفاع آزاد در اثر لغزش دامنه ها وعریض شدن سد

ث.لغزش سد روی لایه های ضعیف

ج.سر ریزشدن آب از روی سد در اثر ایجاد امواج سطح آب

چ.شکست سرریز یا لوله ها خروجی آب به علتهای مختلف ،و نیزانسداد لوله های خروجی و سر ریزو یا زهکشها.

همچنین تخریب سد خاکی می تواند بر اثر عوامل زیر باشد :

o       سرریزشدن آب از روی سد در اثر زمین لغزه ای ناگهانی در مخزن .

o       روانگرایی ماسه های اشباع با تراکم پایین ،و یا از بین رفتن مقاومت رسهای اشباع در اثر ارتعاش زلزله؛زیرا امواج فشار ناشی از زلزله در وهله اول به آب منفذی وارد می شودو ناگهان از تنش موثر خاک کاسته وموجب کم شدن مقاومت برشی میگردد.

ویژگی های دینامیکی سدهای خاکی

جنس خاک پی سد نقش مهمی بر پایداری آن دارد.انهدام سد،روی سنگهای سخت ومحکم کمتر از سنگهای نرم است و بدترین حالت آن است که سد بر روی زمینهای رسی تحکیم نشده احداث شود (مانند سدهایی که روی آبرفتهای ضخیم رودخانه ای بنا شده اند).دامنه امواج ارتجاعی زلزله به هنگام عبور از لایه های سست ،زیاد شده و از سرعت امواج کاسته می شود.

در زلزله های شدید ،دامنه نوسانات به 30تا60سانتیمتر ،و طول امواج به 15تا30مترمی رسد.نشست خاکهای ریزدانه بیش از خاکهای دانه ای(شنی)است.

ماسه با تراکم کم و سست در زیر آبهای زیرزمینی در اثر افزلیش فشار منفذی روان می شوند.با کاهش سرعت امواج ،دامنه نوسانات زیاد می شود .سرعت متوسط امواج در مصالح مختلف تفاوت دارد .در جدول الف سرعت امواج زلزله برای برخی مصالح خاکی درج شده است.

جدول الف.سرعت امواج زلزله در محیطهای مختلف

مصالح

سرعت(متر بر ثانیه)

ماسه سست

شن سست

رسوبات دریایی

شن متراکم

شن سیمان دار (بهم چسبیده)

ماسه سنگ

450-600

600-750

1000-1150

1050-1500

1500-1950

2400-2850

استهلاک

می دانیم که استهلاک موجب کاهش نیروهای زلزله می شود زیراانرژی حاصل از زلزله را جذب نموده و مستهلک می سازد .خاصیت استهلاک ناشی از عوامل مختلفی است مانند:رفتار پسماند ،استهلاک مکانیکی ناشی از لغزش در سطح ،لزجت داخلی ذرات ،و مقاومت (لزجت)خارجی آب یا هوا .

درخاکهای دانه ای [5] استهلاک ناشی از اصطکاک از عوامل دیگر مهمتر است .

.ضریب استهلاک سدهای خاکی بر حسب نوع مصالح مصرفی متفاوت است و می تواند بین 10%تا20%تغییر کند.فرکانس طبیعی اکثر خاکها بین20تا30هرتز است و با افزایش مقاومت خاک زیاد می شود.

محاسبه نیروهای وارد بر سد به روش استاتیکی

در روش استاتیکی ،نیروی زلزله به صورت یک نیروی افقی ثابت در برابردرصدی از وزن سد به آن وارد شده و آنگاه ضریب اطمینان سطوح احتمالی لغزش به روشهای مختلف (فلینیوس،بیشاپ،روش گوه)محاسبه می گردد.کمترین ضریب اطمینان با سطح لغزش بحرانی متناظر خواهد بود.در روش فلینیوس سطح لغزش به صورت بخشی از یک دایره در نظر گرفته شده و قطاع ناقصی از یک شیروانی خاکی بر روی سطح مزبور ،و حول مرکزاختیاری این دایره می لغزد ،شیروانی به لایه هایی قائم و موازی تقسیم شده و نیروی زلزله لایه nام به صورت دونیروی افقی بیان می شود . یکی مربوط به قسمت خشک و دیگری مربوط به قسمت مرطوب است.

ضریب زلزله

در آمریکا معمولا ضریب زلزله سذهای خاکی را بین 05/0تا15/0 در نظر گرفته و نیروی زلزله را به صورت استاتیکی به سد اعمال می کنند.آیین نامه ژاپنی کمیته ملی ژاپنی ساخت سدهای بزرگ در سال 1957ضریب زلزله را بین 12/0تا25/0تعیین نموده است .

البته باید دانست که نیروی زلزله واقعی می تواند بسیار بزرگتر از مقادیر اختیار شده در روش استاتیکی باشد .علاوه بر این به علت حرکتهای ارتعاشی سد،توزیع شتاب در ارتفاع سد بر خلاف فرضیات بخش قبلی به صورت یکنواخت نبوده و هر قدر به سمت تاج سد نزدیک شویم شتاب افزایش می یابد. محاسبات نشان می دهد که مقادیر



خرید و دانلود تحقیق پایداری سدهای خاکی در برابر زلزله


تحقیق؛ پایداری سدهای خاکی در برابر زلزله

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 13

 

پایداری سدهای خاکی در برابر زلزله

مقدمه

آسیب پذیری سدهای خاکی در برابر زلزله از دیرباز مورد توجه بوده زیرا مکرار شاهد ناپایداری آنها در هنگام زلزله های قوی و مخرب بوده ایم . در آمریکا در اواخر دهه 1950توجه بیشتری به پایداری لرزه ای سدهای خاکی معطوف شد. نمونه ای از خرابی سدهاوشیروانی های خاکی در زلزله را می توان در موارد زیر یافت؛ انهدام مخزن بلودین هیلز[1] در لوس انجلس ،انهدام شیروانی سد شفیلد [2] در اثر زلزله نه چندان قوی سانتا باربارا[3] در سال 1922 و انهدام شیروانی بالا دست سان فرناندو [4] در 1971.

حالتهای شکست

انواع آسیبهای احتمالی یک سد خاکی بهنگام زلزله با توجه به شکل 1 به شرح زیراست :

الف.شکست و ریزش سد به علت وجودگسل اصلی در زیر قاعده سد.

باید توجه داشت که معمولا گسلها از میان دره ها ی آبخیز عبور می کنند و اتفاقا مکان مناسب برای احداث سد نیز در همین دره ها است.البته همه گسلها فعال ومخرب نمی باشند.

ب.گسیختگی دامنه سد دراثر جنبش زمین (لغزش شیروانی ها یبالا دست و پایین دست )

پ.از بین رفتن ارتفاع آزاد در اثر نشست نا متعادل در منطقه

ت.از بی رفتن ارتفاع آزاد در اثر لغزش دامنه ها وعریض شدن سد

ث.لغزش سد روی لایه های ضعیف

ج.سر ریزشدن آب از روی سد در اثر ایجاد امواج سطح آب

چ.شکست سرریز یا لوله ها خروجی آب به علتهای مختلف ،و نیزانسداد لوله های خروجی و سر ریزو یا زهکشها.

همچنین تخریب سد خاکی می تواند بر اثر عوامل زیر باشد :

o       سرریزشدن آب از روی سد در اثر زمین لغزه ای ناگهانی در مخزن .

o       روانگرایی ماسه های اشباع با تراکم پایین ،و یا از بین رفتن مقاومت رسهای اشباع در اثر ارتعاش زلزله؛زیرا امواج فشار ناشی از زلزله در وهله اول به آب منفذی وارد می شودو ناگهان از تنش موثر خاک کاسته وموجب کم شدن مقاومت برشی میگردد.

ویژگی های دینامیکی سدهای خاکی

جنس خاک پی سد نقش مهمی بر پایداری آن دارد.انهدام سد،روی سنگهای سخت ومحکم کمتر از سنگهای نرم است و بدترین حالت آن است که سد بر روی زمینهای رسی تحکیم نشده احداث شود (مانند سدهایی که روی آبرفتهای ضخیم رودخانه ای بنا شده اند).دامنه امواج ارتجاعی زلزله به هنگام عبور از لایه های سست ،زیاد شده و از سرعت امواج کاسته می شود.

در زلزله های شدید ،دامنه نوسانات به 30تا60سانتیمتر ،و طول امواج به 15تا30مترمی رسد.نشست خاکهای ریزدانه بیش از خاکهای دانه ای(شنی)است.

ماسه با تراکم کم و سست در زیر آبهای زیرزمینی در اثر افزلیش فشار منفذی روان می شوند.با کاهش سرعت امواج ،دامنه نوسانات زیاد می شود .سرعت متوسط امواج در مصالح مختلف تفاوت دارد .در جدول الف سرعت امواج زلزله برای برخی مصالح خاکی درج شده است.

جدول الف.سرعت امواج زلزله در محیطهای مختلف

مصالح

سرعت(متر بر ثانیه)

ماسه سست

شن سست

رسوبات دریایی

شن متراکم

شن سیمان دار (بهم چسبیده)

ماسه سنگ

450-600

600-750

1000-1150

1050-1500

1500-1950

2400-2850

استهلاک

می دانیم که استهلاک موجب کاهش نیروهای زلزله می شود زیراانرژی حاصل از زلزله را جذب نموده و مستهلک می سازد .خاصیت استهلاک ناشی از عوامل مختلفی است مانند:رفتار پسماند ،استهلاک مکانیکی ناشی از لغزش در سطح ،لزجت داخلی ذرات ،و مقاومت (لزجت)خارجی آب یا هوا .

درخاکهای دانه ای [5] استهلاک ناشی از اصطکاک از عوامل دیگر مهمتر است .

.ضریب استهلاک سدهای خاکی بر حسب نوع مصالح مصرفی متفاوت است و می تواند بین 10%تا20%تغییر کند.فرکانس طبیعی اکثر خاکها بین20تا30هرتز است و با افزایش مقاومت خاک زیاد می شود.

محاسبه نیروهای وارد بر سد به روش استاتیکی

در روش استاتیکی ،نیروی زلزله به صورت یک نیروی افقی ثابت در برابردرصدی از وزن سد به آن وارد شده و آنگاه ضریب اطمینان سطوح احتمالی لغزش به روشهای مختلف (فلینیوس،بیشاپ،روش گوه)محاسبه می گردد.کمترین ضریب اطمینان با سطح لغزش بحرانی متناظر خواهد بود.در روش فلینیوس سطح لغزش به صورت بخشی از یک دایره در نظر گرفته شده و قطاع ناقصی از یک شیروانی خاکی بر روی سطح مزبور ،و حول مرکزاختیاری این دایره می لغزد ،شیروانی به لایه هایی قائم و موازی تقسیم شده و نیروی زلزله لایه nام به صورت دونیروی افقی بیان می شود . یکی مربوط به قسمت خشک و دیگری مربوط به قسمت مرطوب است.

ضریب زلزله

در آمریکا معمولا ضریب زلزله سذهای خاکی را بین 05/0تا15/0 در نظر گرفته و نیروی زلزله را به صورت استاتیکی به سد اعمال می کنند.آیین نامه ژاپنی کمیته ملی ژاپنی ساخت سدهای بزرگ در سال 1957ضریب زلزله را بین 12/0تا25/0تعیین نموده است .

البته باید دانست که نیروی زلزله واقعی می تواند بسیار بزرگتر از مقادیر اختیار شده در روش استاتیکی باشد .علاوه بر این به علت حرکتهای ارتعاشی سد،توزیع شتاب در ارتفاع سد بر خلاف فرضیات بخش قبلی به صورت یکنواخت نبوده و هر قدر به سمت تاج سد نزدیک شویم شتاب افزایش می یابد. محاسبات نشان می دهد که مقادیر



خرید و دانلود تحقیق؛ پایداری سدهای خاکی در برابر زلزله


تحقیق در مورد درسهای آموخته از زلزله بم

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 7 صفحه

 قسمتی از متن .doc : 

 

LESSON LEARNED FROM BAM EARTHQUAKE

درسهای آموخته از زلزله بم

آموخته ایم که زلزله بم ضعف مدیریت بحران داشتیم و انسجام لازم درون بخشی را نداشتیم.

آموختیم که در زلزله بم گرفتار خودمحوری از سوی سازمانها و بخش های مختلف بوده‌ایم.

آموختیم که وقت را در امر تصمیم گیری برای آماده شدن در مدیریت بحران همواره صرف ننموده ایم.

آموختیم که سازمانهای مختلف ما از بحرانهای گذشته درس و تجربه لازم را نگرفته ایم.

آموختیم که مردم با زلزله زده یا بحران زده ملاطفت نمائیم، راستگو باشیم، صداقت پیشه کنیم، صبوری و حسن خلق را بمعنای واقعی به مرحله عمل درآوریم، از خشونت بپرهیزیم، زودرنج نباشیم.

آموختیم که میزان نظام مراقبت بیماریها (Surveillance and control of piseases) را بر اساس اصول اپیدمیولوژیک (Epidemiologic) شرایط بحران بمرحلة اجراء درآوریم و با اجراء این نظام به دست نایافته های ارزشمندی دست یافته و به آن ببالیم.

آموختیم که مسائل و شرایط روحی بحران زده گان را بایستی با علم روان شناختی بطور دقیق مورد ارزیابی قرار دهیم و با اجرای طرح مداخلات اجتماعی و روانی (Psycho-Social) این واقعیت را به اثبات رساندیم.

آموختیم که نظام اجرائی بر اصول صحیح مدیریت بهداشت خانواده (Family Health Management) در شرایط بحران بم از اهمیت ویژه یا برخوردار است.

آموختیم که نقش رابطین بهداشت در امر انتقال پیام بهداشتی به زلزله‌زدگان مهمترین عامل افزایش قدرت در پذیرندگی آنان است.

آموختیم که در مدیریت بهداشت و درمان (Medical & Health Management) بحران نقش ایجاد یک نظام فعال در سیستم بهداشت محیط (Environmental Health) از مهمترین فعالیت ها است.

آموختیم که زمانی بخش بهداشت موفق است که بازوی راست مسئولین خارج از بخش، تنها بهداشت محیط باشد.

آموختیم که اگر مسئولین خارج از بخش بهداشت و درمان، بهنگام توجه لازم به پیامدها و اخطارهای بهداشتی ننمایند، مشکلات بروز بیماریها در شهر چندین برابر خواهد شد.

آموختیم که بزرگترین مشکل ما در آواربرداری و اسکان، عدم توجه به خواستهای مردم است و مکنونات قلبی اهالی در این بحران آنطور که باید حس نگردیده است.

آموختیم که در بحران شهر بم، زمانیکه پایه های اقتصاد شهرستان نابود میگردد، روستاهای وابسته به این اقتصاد اگر از فقر مادی و رفاه محدود برخوردار باشند در نتیجه جمعیت به سمت شهر تخریب شده هجوم میاورد و یکباره جمعیت شهر از حد قبل از زلزله هم فراتر خواهد شد.

آموختیم که در توزیع امکانات به خواسته های مردم توجه ویژه داشتن، اصلی است اجتناب ناپذیر و اگر چنانچه یک شورای تشخیص مصلحت از معتمدین محلی بصورت فراگیر فعالیت نماید، اکثریت خواستهای اهالی بحران زده مرتفع خواهد شد.

آموختیم که اگر اردوگاههای چادری با نظر بهداشت محیط استقرار میافت، تا این حد مشکلات و خسارت ببار نمی آمد.

آموختیم که در این زلزله ادامه تغذیه بشکل فعلی و مصرف طولانی مدت کنسروجات می تواند در بروز اختلالات تغذیه ای (Nitrition) تأثیر به سزائی داشته باشد.

آموختیم که در این زلزله، سیستم لوله کشی آب آشامیدنی نیز بعلت عمر طولانی و فرسودگی و حرکت های خاص زمین در زلزله کاملاً فرسوده گردیده و حرکت ماشین آلات سنگین خارج کننده آوار و نخاله های ساختمانی از شهر نیر به شدت بر ترکیدگی لوله های آب افزوده است.

آموختیم که در این شرایط بحران، حرکت اولیه توزیع آب توسط بطری (آبمعدنی) توانست بمیزان فراوان از بروز بیماریهالی ناشی از آب جلوگیری نماید.

بم در حال حاضر با توجه به شرایط آب غیرقابل شرب (سیستم لوله کشی) پیامی دراد که بهر شکل بایستی جایگزین مناسب برای رفع تشنگی مردم این شهر دردمند اقدام نمود.

آموختیم که نسبت به جمع آوری آوار و نحوه انتقال آن نظارت بهداشتی لازم است.

آموختیم که نخاله های ناشی از اوار با توجه به مستعد بودن منطقه از نظر بیماریهای واگیر (Communicable Discases) بایستی تحت نظر سیستم بهداشتی از منطقه خارج و دفن می گردید.

آموختیم که اخطارهای بهداشتی ما در رابطه با نحوه جمع آوری نخاله‌ها اثربخش نبوده است.



خرید و دانلود تحقیق در مورد درسهای آموخته از زلزله بم