لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 37
جوش پذیری فلزات مختلف
خواص مختلفی بر روی جوش پذیری مقاومتی تاثیر گذار هستند که عبارتند از:
(1) مقاومت الکتریکی: این خاصیت مهمترین خاصیت تاثیرگذار در جوشکاری مقاومت است زیرا گرمای تولید شده از طریق جریان جوشکاری مستقیماً با مقاومت متناسب است. برای فلزاتی که مقاومت الکتریکی کمتری دارند، جریان بیشتری برای تولید حرارت مورد نیاز است. مثلاً فلزی مثل مس خالص در جوشکاری مقاومتی مشکل دارد زیرا دارای مقاومت الکتریکی اندکی است. علاوه بر این انحراف جریان از جوش های مجاور نیز در این نوع فلزات پراهمیت تر می شود. بنابراین فلزات با مقاومت الکتریکی بالا قابلیت جوشکاری بیشتری نیز دارند. جریانهای بیشتر همچنین نیازمند ترانسفورماتور و خطوط توان بزرگی می باشد که این مساله قیمت دستگاه ها را افزایش می دهد.
(2) هدایت حرارتی: این خاصیت از آن جهت مهم است که قسمتی از حرارت تولید شده در جوشکاری مقاومتی به دلیل هدایت به فلز پایه تلف می شود و توان ورودی باید بر این اتلاف انرژی غالب گردد. بنابراین فلزاتی که هدایت حرارتی بیشتری دارند قابلیت جوشکاری کمتری خواهند داشت. می توان گفت که هدایت الکتریکی و حرارتی دو خاصیتی هستند که تقریباً به موازات یکدیگر حرکت می کنند. به عنوان مثال آلومینیم هم هادی حرارت است و هم هادی جریان خوبی است در حالیکه فولادهای زنگ نزن قابلیت هدایت حرارت و جریان ضعیفی دارند.
(3) ضریب انبساط حرارتی: ضریب انبساط حرارتی بیانگر تغییرات ابعادی است که در قطعه رخ می دهد. هنگامیکه دما در آن تغییر نماید. اگر ضریب انبساط حرارتی زیاد باشد، پیچش2 و بشکه ای شدن3 در اتصالات جوش اتفاق می افتد.
(4) سختی4 و استحکام: الکترودها به آسانی در فلزات نرم فرو می روند، در حالیکه در فلزات سخت، نیاز به نیروهای بالاتری برای جوشکاری وجود دارد. بنابراین در جوشکاری این فلزات الکترودهایی با سختی و استحکام بالا نیاز است تا از تغییر شکل سریع الکترودها در حین جوشکاری ممانعت شود.
(5) مقاومت حد برابراکسید شدن: همه فلزات معمول هنگامیکه در معرض هوا قرار می گیرند، اکسید می شوند. برخی از این فلزات سریع تر اکسید شده و برخی کندتر. معمولاً اکسید سطحی مقاومت الکتریکی را افزایش می دهد. لایه اکسید سطحی معمولاً قابلیت جوشکاری مقاومتی فلزت را کم می کند. در جوشکاری مقاومتی نقطه ای و نواری، این لایه می تواند باعث پاشش سطحی، چسبیدن فلز به الکترود و ظاهر سطحی نامناسب جوش شود.
آلیاژهای آلومینیم به سرعت اکسید سطحی تشکیل می دهند. بنابراین جوشکاری این آلیاژها باید در زمان کوتاهی پس از تمیزکاری و زودودن لایه اکسیدی انجام شود تا از اکسید شدن مجدد تا حد امکان اجتناب گردد. در مورد فولادهای زنگ نزن اگر در کارگاه ساخت قبل از بسته بندی و حمل تمیزکاری اکسیدها صورت گرفته باشد ، نیازی به انجام این کار قبل از جوشکاری نخواهد بود. اینکه چه مقدار از زدودن اکسیدها قبل از جوشکاری نیاز است بستگی به مقدار اکسید موجود روی سطح و اثر آن بر روی خواص جوش خواهد داشت.
(6) دامنه دمای خمیری: اگر فلزی در یک محدوده دمایی باریک ذوب شود و جریان یابد نسبت به فلزی که دامنه خمیری وسیعتری دارد متغیرهای جوشکاری آن باید بیشتر کنترل شود. دامنه های خمیری اثر قابل توجهی بر فرآیند جوشکاری و انتخاب تجهیزات دارد.
آلیاژهای آلومینیم محدوده خمیری اندکی دارند و نیازمند کنترل دقیق جریان جوشکاری، نیروی الکترودها و نحوه برخاستن الکترود در طول جوشکاری دارند. جوشکاری زائده ای آلومینیم بصورت تجاری انجام نمی شود. فولادهای کم کربن دامنه خمیری وسیعی دارند و به آسانی جوشکاری مقاومتی می شوند.
(7) خواص متالورژیکی: در جوشکاری مقاومتی یک حجم کوچکی از فلز در زمانی کوتاه تا دمای فورج یا ذوبش گرم می شود. فلز گرم شده سپس به سرعت از طریق الکترودها و فلز پایه پیرامونش سرد می شود. فلزات کار شده در مناطقی که در سیکل حرارتی مورد نیاز جوشکاری قرار می گیرند آنیل می شوند. در مقابل سرد شدن سریع، باعث سخت شدن در برخی فولادها می شود. فلز جوش فولادهای پرکربن ممکن است بر اثر این سخت شدن ترک بردارند. بنابراین نیاز است سیکل تمپر کردن بعد از جوشکاری اضافه شود تا از این پدیده اجتناب گردد. برای بهینه کردن خواص مکانیکی در منطقه جوش آلیاژی قابل عملیات حرارتی ممکن است نیاز به عملیات حرارتی پس از جوشکاری5 وجود داشته باشد.
4-1-1- فولادهای کم کربن
این فولادها معمولاً کمتر از 25/0 درصد کربن دارند. بطور کلی قابلیت جوشکاری مقاومتی این نوع فولادها بالا است. مقاومت الکتریکی متوسطی دارند و قابلیت سختکاری آنها اندک است. در جوشکاری این فولادها در دامنه وسیعی از تنظیمات جریان، نیروی الکترود و زمان جوشکری قابلیت دسترسی به استحکام جوش مناسب وجود دارد. معمولاً یکسری نمودارها و جداول خاصی برای جوشکاری هر ورقی ارائه می شود که این پارامترها برای شروع کار مناسب هستند ولی برای بهینه کردن فرآیند بایستی این پارامترها را مقداری اصلاح نمود که این اصلاح بستگی به نوع دستگاه جوشکاری، خواص دینامیکی دستگاه جوش، مشخصات پنوماتیکی و مدار ثانویه، شکل الکترود و جنس آن دارد.
به عنوان مثال برای گان های سبک وزن قابلیت اعمال نیرو محدود می باشد و مقادیر نیروی اعمالی برای ورق هایی با ضخامت بیش از mm 6/1 تا 30% کاهش می یابد. جریان جوشکاری نیز بایستی مناسب انتخاب شود. هنگام جوشکاری ورق هایی با ضخامت های غیریکسان، شرایط جوشکاری بر اساس ورق نازکتر تنظیم می شود. اگر تعداد ورق ها بیش از دو ورق بود، شرایط جوشکاری بر اساس نازکترین ورق انتخاب خواهد شد.
در مورد جوشکاری فولادهای استحکام بالای کم آلیاژ (HSLA) ، نیروی مورد نیاز الکترود ممکن است تا 20%
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 6
جوش فرکانس
دراین تحقیق که شامل تشکیل نفوذ کننده جوشکاری مقاوم الکتریکی فرکانس بالا ( های فرکانس )است مورد بررسی قرار گرفته است. تشکیل برآمدگی فلز گذاخته شده که بین لبه های نوار مجاور نزدیک به نوک در امتداد یک فاصلهی باریک به سمت نقطه جوشکاری با سرعتی بیشتر از سرعت عبور شکاف صورت می گیرد. باعث ایجاد فرکانس تشکیل و سرعت برآمدگی صرفاً قدرت گرمای داخلی میباشد.
میان متغیرهای چگونگی سیربرآمدگی ها تصمیم استاندارد فاصلهی سیریک رابطه قوی با غلظت عیوب در جوشکاری آشکار است و بستگی به مکانیسم پیشنهاد شدهی تشکیل نفوذ کننده در حین HFERW دارد.
مقدمه: فرایند HFERW به میزان بسیاری در ساختار لوله های فولادی ردزدار مورد استفاده قرار میگیرد. دراین مرحله ورق کم کم به شکل لوله ای درمیآید. و از میان رولینگها به وسیله برخورد هل دهنده یا رسانه های پیچدار همانند شکل نشان داده شده در تصویر 1A عبور پیدا می کند و جریان بالایی به لبههای ورق وارد میشود جریان های بالا باعث بوجودآمدن اکسید و اثرهای جانبی به صورت یک لایه سطح از لبه می شوند. (Ref.1) و درنتیجه گرمای زیادی توسط رولینگها ایجاد می وشد. برای مثال عمق نفوذ جریان های 450KHZ در یک فولاد داغ شده تا دمای 8000C حدود 6.8mm میباشد. (Ref.2) این مشخصه پردازش انرژی ها و سرعت جوشکاری را میتواند تا میزان زیادی عاری از مشکلات جوش مخصوصاً عیوبی که از ترکیب اکسید و ناپاکی های سطح بوجود می آیند. لوله های حاصل از فرایند HFERW به علت کیفیت دقق جوش کاربردهای زیادی از جمله خطوط لوله های محافظ نفتی دارند. با این حال دو نوع مهم ازعیوب جوش دراین فرایند موجود است.
عیب جوش سرد وعیب نفوذ کننده (Ref 3.4)
عیب جوش سرد مربوط به تشکیل لایه های نازک اکسیدی که به علت ناکافی بودن قدرت گرمای ورودی ، در داخل ورق برای ذوب کردن لبه های ورق بوجود می آیند. می باشد. قدرت گرمای ورودی باید با کلفتی ، سرعت وورق و طول و همترازی لبه های ورق متناسب باشد. اگر قدرت گرمای وارد شده کم باشد فلز گداخته شده توانایی خارج کردن اکسیدهای روی سطح را ندارد وعمدتاً باعث پیدایش عیب جوش سرد می شود. عیب نفوذکننده ذکر شده هنگامی رخ میدهد که قدرت گرمای وارد بسیار زیاد باشد که باعث پدیدار شدن اکسیدهای پهن از لحاظ ریخت و از نوع اکسید Fe و Mn و Si می شود. سایز نفوذکنده میتواند در محدوده چند میلیمتر تا چند سانتیمتر باشد این اثر های بحرانی خاصیت ماشینی لولهها تحقیق را به وارسی مکانیزم تشکیل نفوذکننده در نظریه های کلاسیک هدایت کرد. (Ref.6,7)
ادعا بر این است که نفوذ کننده موجب ترکیب فلز ذوب شده با اکسیدهای موجود در گپ می شود. در فرایند HFERW نقطه جوش در مجاورت گپهای موازی کنار لبه های ورق اتفاق افتاده است. تشکیل گپهای ورق توسط الکترومغناطیس باعث خروج فلز گداخته شده از لبه های ورق با همان سرعت نزدیک شدن لبه ها رد طول مدت جوشکاری می شود.
سرعت نزدیک شدن متناسب با سرعت باریکه و زاویه V می باشد. در تحقیقات شان دلیل اتصال کوتاه درنقطه اوج در قدت های رمای ورودی بالا گپهای باریک گزارش شده است. هنگامی که اتصال کوتاه اتفاق می افتد نیروی موجی الکترومغناطیس ناپدید و فلز مذاب شده با اکسیدها ترکیب می شود. این مذاب فکر میشد که دلیل نفوذ کننده باشد. با این حال نفوذ کننده ها حتی در شرایط جوشکاری نرمال در قدرتهای گرمای ورودی مشاهده شدند. (Ref.8) همچنین چندین تحقیق اشاره به رخداد ناگهانی جرقه یا اتفاقات جرقهای در نقطه شکاف در فرایند HFERW دارد. (Ref.9) هنگام درز پوشانیدن گپ کاهش پیدا میکند. و جریان به سمت جرقه منحرف می شود و نیروی موجی الکترومغناطیسی فلز مذاب شده را به سمت گپ منتقل می کند. دراین تحقیق اثر درزپوشانیدن در نقطه اوج در پدیده ی تشکیل نفوذکننده ها با جزییات بیشتری بوسیله دوربین های ویدویی سرعت بالا و فیلمبرداری سرعت بالا موردبررسی قرار گرفته شد.
اقدامات آزمایشی
جوشکاری مقاوم الکتریکی فرکانس بالا بوسیله یک لوله 8 میلیمتری و یک وانمودگرا اجرا شد اکثر آزمایشات به ماشینی با دستگاه جوشکاری HF از نوع مرتبط مجهز شدند. یک مانع با یک هسته ای از هیدرواکسید آهن با آب سردشده برای بالا بردن کارایی دستگاه جوشکاری استفاده شد. سرعت جوشکاری حین تست بالا بردن کارایی دستگاه جوشکاری استفاده شد. سرعت جوشکاری حین تست بود و ضخامت ورق 9.5 میلیمتر بود. ترکیب شیمیایی ورق نیز به صورت روبرو بود:
Fe-0.174c-0.109Si-0.837Mn-0.17P-007S-0.029Cu
در قدرت گرمایی ورودی از 201 به 237 KW تغییر یافته بود. فرکانس جریان 400 H بود. پدیده جوشکاری با استفاده از دوربین سرعت بالا و یک دوربین ویدویی سرعت بالا مشاهده شد. سرعت شکل گیری با دوربین سرعت بالا از 1000 تا 10/000 تصویر درثانیه (PPS) متغیر بود. به منظور بالا بردن مشاهدات درزپوشانیدن حاصل از نقطه اوج چگالی خنثی ، رنگ قرمز و فیلتر دو قطبی به لنز های دوربین اضافه شد . وانمودگر ERW در وارسی پدیده جوش با لوله در جزییات بیشتری استفاده شد و این کارکرد در شکل 1B نشان داده شده است. وانمودگر ماشیسن جوشکاری مقام الکتریکی فرکانس بالا و مرتبط بخش فرم دهندهی لوله و مفصل های ورق را ندارد. به منظور اندازه گیری محدودهی شکاف عیبهای جوش سطح بالای نمونه به اندازه یک چهارم از ضخامت کلفتی ورق به صورت کاملا دقیق صیقل کاری وماشینکاری شد. طول هر نمونه 5 سانتیمتر و طول کل نمونه آزمایشی در شرایط جوشکاری 60 سانتیمتر بود. سایز و تعداد عیوب جوشکاری نیز با استفاده از میکروسکوپ نوری مرکب تحلیل گر تصویر اندازه گیری شد. تحلیلهای جزییات برای ساختار دقیق سطح جوش بااستفاه از اسکن میکروسکوپ الکترونی و طیف کانی دیسپرسیو.
نتایج و بحث
درز پوشانیدن و شکل برآمدگی
شکل 2 تصویر فیلمبردای با سرعت بالا از لبه های ورق با فیلتر و بدون دو قطبی در فرایند HFERW را نشان میدهد. لبه های فوق که مذاب شده است در نزدیکی نقطهی جوش ایجاد می شود و فاصلهی ورق توسعه پیدا می کند. طول فاصله دو لبه با استفاده از فیلمبرداری سرعت بالا – تابعی از قدرت گرمای ورودی درشکل 3 به طور خطی از 12 تا 40 میلیمتر متناسب توان گرمای ورودی از 201 به 237 کیلووات تغییر کرده است. هنگامی که حالت ذوب شدن لبه ها با فیلتر دو قطبی (شکل 2B) و جرقه ها (که درمکانهای سفیدمشاهده می شود.) که بدون فیلتر قابل درک نیستند مشاهده شد در این بخش تحقیق بدرستی اتفاقات در محدودهی سراسر سوراخ ایجاد شده توسط توان گرمای ورودی پرداختیم. فرکانس درزپوشاندن که تغییرات آن وابسته به قدرت گرمای ورودی است درمحدودهی 0.1 تا 5 کیلوهرتز بود. در توان گرمای ورودی فرکانس نسبتاً بالا و متناسب با قدرت ورودی گرما کاهش پیدا کرد.یکی از پدیده های جالب در جرقه های مذکور تشکیل برآمدگی فلز مذاب بین دولبه ورق بلافاصله بعد از درزپوش کردن می باشد. که شروع به حرکت در امتداد گپ میباشد. شکل 4 تصویر دائمی درزپوشانیدن و حرکت برآمدگی در فرایند HFERW را نشان میدهد . عکسهای فیلم با سرعت 1000 PPS با استفاده ا زسیستم ویدیو سرعت بالا بودند. همانند شکل نشان داده شده (شکل 4B ) بعد از درز پوشیدن نزدیک نقطهی اوج یک برآمدگی بین دو لبه شکل گرفت. برآمدگی تشکیل شده همیشه به سمت نقطهی جوشکاری سیر میکرد. فلز مذاب همانند برآمدگی در میان گپ نازک به سمت نقطه جوشکاری جاروب شد. دوباره دراین تحقیق عمل جاروب کردن برآمدگی قرار گرفت. سرعت سیرر برآمدگی با استفاده از اندازه گیری مدت سپری شده سیر گپ که تابع توان گرمایی ورودی است برآورد شد. همانطور که قدرت گرمایی ورودی از 201KW به 237 KW افزایش پیدا می کند سرعت از 160 تا 375mpmin افزایش پیدا میکند. اوج سرعت برآمدگی ها در توان متوسط دسته حجم سریعتر از سیر سرعت ورق است که در سرعت بالا هنگام ذوب باعث حرکت موجی تند دانه های مذاب می شود. این مشاهدات نشان میدهد که نه تنها یزدی موجی الکترومغناطیس بلکه فلز مذاب برآمدگی ها را جاروب می کند. و آنها را به سمت شکاف و ایجاد یک فضای خالی ا زاکسید برای جوشکاری خوب هدایت می کند. شکل 6 بیانگر فاصله حرکت جاروب کردن برآمدگی ها که تابع توان ورودی است می باشد. فاصله حدود 8.6 میلی است. وقتی که قدتر ورودی 20KW است. همانطور که قدرت ورودی به 237 KW افزایش پیدا میکند فاصله نیز به طور کینواخت به 26.5 میلیمتر افزایش می یابد.
مکانیسم درز پوشانیدن و حرکت برآمدگی در جریان HFERW :
در این تحقیق جلوبردن و سیر برآمدگی فلز مذاب و درزپوشانیدن نزدیک نقطه اوج در میان گپ مذکور که در تشکیل عیوب فرایند HFERW نقش مهمی دارند بررسی شده
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 6
جوش آرگون
ساختمان تورچ
ساختمان تورچ: تورچ جوشکاری الکترود را نگهداشته و جریان الکتریکی را به سمت قوس هدایت می کند و گاز لازم برای محافظت قوس و مذاب را به محل جوش انتقال می دهد. قطعات تورچ در شکل 3 نشان داده می شود.
تورچهای جوشکاری که زیر جریان 200 A بکار میروند،معمولا با هوا سرد می شوند،به عبارتی گاز خنثی از اطراف کابل حرکت میکند و سردایش لازم را فراهم می کند.اما در جوشکاری های پیوسته که با آمپراژهای بالا سروکار دارد،و نیز در روش ماشینی از تورچهایی استفاده می شود که با آب سرد می شوند.
الکترودها.الکترودهای غیرمصرفی که در روش GTAW بکار می روند ، از تنگستن و یا آلیاژهای آن ساخته می شوند.متداولترین این آلیاژها،آلیاژ 2% ThO2-W یا EWTh-2 می باشد.این آلیاژ از ویژگی های کاری خوبی برخوردار است و پایداری بهتری دارد.توریا رادیواکتیو بوده وفلذا هنگام تیز کردن آن باید مواظب بود که گرد و غبار آن استنشاق نشود.سنگ زنی می تواند خطرات جدی در پی داشته باشد و باید قوانین زیست محیطی را رعایت کرد.الکترودهای لانتانوم دار EWLa-1 و ایتریم دار الکترودهایی هستند که ویژگی های شروع خوبی داشته و پایداری قوس آنها حتی در ولتاژهای کم نیز قابل قبول و مناسب است.الکترودهای تنگستن سریم دار EWCe-2 نسبت به الکترودهای توریم دار از لحاظ پایداری قوس و نرخ ذوب کردن کمی بهترند.هرکدام از الکترودهای مذکور جوش های قابل قبولی تولید می کنند.توانایی آسان ساطع کردن الکترون در ولتاژ پایین الکترودهای لانتالوم دار ازعلل اصلی کارکرد خوب آنهاست.
تنگستن خالص در جوشکاری ac استفاده می شود وبالاترین نرخ مصرف را دارند.گاهی اوقات از الکترودهای زیرکنی نیز استفاده میشود.الکترودهای تنگستن براساس ترکیب شیمایی شان طبقه بندی می شوند.(جدول1)شرایط لازم برای این الکترودها در AWS A5.12 ذکر می شود.شکل نوک الکترودها بر شکل حوضچه مذاب موثر است.الکترودهایی که زاویه 60-120° دارند،پایدارترند و عمق نفوذ خوبی را دارند.الکترودهای با زاویه کمتر 5-30° برای جوش شیاری مناسب هستند تا از ایجاد قوس بین دیواره های محل اتصال جلوگیری کند.
سیستم تغذیه سیم:از تعدادی قطعه تشکیل شده است که از سیستم ساده تا پیجیده را در بردارند.سیستم اصلی آن درواقع وسیله ای است که سیم را با قلاب گرفته و سپس آن را از قرقره کشیده و بعد آنرا از طریق لوله راهنما به سمت محل جوشکاری انتقال می دهد.برای حرکت موتور و نیز کنترل آن از کنترل و سوئیچ های الکترونیکی استفاده می شود.
کابل،شلنگ و رگولاتورها برای انتقال جریان الکتریکی،آب و گاز خنثی به محل جوشکاری لازم می باشند.
/
جوِشکاری آرگون (GTAW)-
نوسان قوس در هر دو حالت جوشکاری دستی و ماشینی استفاده می شود.مزایای موجوددر جوشکاری دستی پایه و اساس کنترل جوش هنگام تنظیم تغییرات اتصال جوش و گپ موجود است.در جوشکاری ماشینی،نوسان از طریق حرکت مکانیکی تورچ جوشکاری و یا حرکت دادن پلاسمای قوس با کمک میدان مغناطیسی خارجی انجام می شود.نوسان باعث می شود که گرمای تولیدی در محل های دقیق انتقال داده شود.این وضعیت برای زمانی که جوشکاری قطعات با اشکال پیچیده انجام می شود،یک مزیت بشمار می رود.وقتی از نوسان جوش استفاده می شود،تعداد پاس ها و نیز مقدار کل گرمای تولیدی کاهش می یابد زیرا هزینه حذف انقباض ها و عیوب دیگر را از هزینه کلی جوش کم می کند.
شکل 4 اثر نوسانات مغناطیسی بر اعوجاج را نشان می دهد.در برخی از آلیاژها لازم است که از چند پاس برای ایجاد اثر برگشتی پاس های بعدی و بصورت جوش مستقیم string استفاده شود که در این صورت نوسان Oscillation بکار نمی رود.برای پایداری قوس،کمتر کردن وزش قوس و نیز حرکت دادن پلاسمای قوس در امتداد حرکت تورچ می توان از میدان مغناطیس خارجی استفاده کرد.اینکار سبب می شود ظاهر جوش بهتر شده و سرعت جوشکاری افزایش یابد.
پارامترهای فرآیند
جریان جوشکاری: جریان جوشکاری یکی از مهمترین پارامتر های جوشکاری است که باید در هر روش جوشی کنترل شود زیرا بر عمق نفوذ،سرعت جوشکاری،کیفیت جوش و نرخ رسوب موثر است.
/
در کل سه نوع انتخاب برای جریان جوشکاری وجود دارد:
جریان مستقیم الکترود منفی DCEN
جریان مستقیم الکترود مثبت DCEP
جریان متناوب
در شکل های 5 و6 تاثیر نوع جریان (ac,dc) بر شکل ظاهری جوش نشان داده می شوند. هم چنین نوع جریان نسبت به ماده انتخابی در جدول 2 آورده شده است.
در جریان متناوب ،در 60 Hz پولاریته بین قطعه کار و الکترود تغییر می کند. این تغییر سریع در پولاریته باعث می شود که یک نوع فرآیند کاتدی ایجاد شود که در حذف لایه های اکسیدی در سطح فلزات بالاخص فلزات آلومینوم ومنیزیم بسیار مفید است.در هر نیم سیکل که شرایط DCEP برقرار می شود، الکترودها گرم می شوند.لازمه این کار اینست که از الکترودهای با قطر بزرگ که از تنگستن خالص ساخته شده اند، استفاده شود. در فرآیند GTAW بیشتر از جریان مستقیم با الکترود منفی استفاده می شود.در این حالت، گرمای بیشتری وارد قطعه کار شده و در نتیجه نرخ ذوب افزایش می یابد.
/
جوِشکاری آرگون (GTAW)
جوشکاری قوسی با الکترود تنگستنی و در پناه گاز محافظ که گاهی اوقات Heliarc و یا جوش تیگ TIG(جوشکاری با تنگستن و گاز خنثی) نیز نامیده می شود، در سال 1930 برای جوشکاری فلز منیزیم اختراع شد.Russell Meredith از الکترود تنگستنی همراه با گاز خنثی هلیوم برای جوشکاری فلز منیزیم استفاده کرد.این روش جایگزین روش پرچ برای اتصال قطعات هواپیما از جنس آلومینوم و منیزیم شد.روش جوشکاری Heliarc در طی این مدت تا کنون اصلاح زیادی یافته است ولی مکانیسم اصلی آن همان است که مردیت آن را بکار برده بود.
درجه حرارت ذوب برای اتصال از نگهداری قوس بین الکترود تنگستن و قطعه کار فراهم می شود.(شکل1)دمای حوضچه مذاب تا 2500 C میرسد.گاز خنثی حوضچه مذاب را احاطه می کند وآنرا در مقابل آلودگی های اتمسفری محافظت می کند.معمولا گاز خنثی آرگون،هلیوم و یا مخلوطی از آن دو است.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 10
تاریخچه جوشکاری
احتیاجات بشر ، اتصال و جوش را در همه موارد خواستار بوده است ، مثلاً از رومیهای قدیم ، فردی به نام"پلینی" از لحیم به نام آرژانتاریم و ترناریم استفاده میکرد که دارای مقداری مساوی قلع و سرب بود و ترنایم دارای دو قسمت سرب و یک قسمت قلع بود که هنوز هم با پرکنندگی مورد استفاده قرار میگیرند.
دقت و ترکیبات شیمیایی و دستگاههای متداول طلاسازی از قدیمالایام در جواهرات با چسباندن ذرات ریز طلا بر روی سطح آن با استفاده از مخلوط نمک و مس و صمغ آلی که با حرارت ، صمغ را کربونیزه نموده ، نمک مس را به مس احیاء میکنند و با درست کردن آلیاژ طلا ، ذرات ریز طلا را جوش میدهند و
چون علم جوشکاری همراه با گنج تخصصی بود ، یعنی هر جوشکار ماهر در طی تاریخ درآمد زیادی داشت ، سبب شد که اسرار خود را از یکدیگر مخفی نمایند . مثلاً هنوز هم در مورد لحیم آلومینیوم و آلیاژ ، آن را از یکدیگر مخفی نگه میدارند . در جریان جنگهای جهانی اول و دوم جوشکاری پیشرفت زیادی کرد .
احتیاجات بشر به اتصالات مدرن ، سبک ، محکم و مقاوم در سالهای اخیر و مخصوصاً بیست سال اخیر ، سبب توسعه سریع این فن گردید و سرمایهگذاری های عظیم چه از طرف دولتها و چه صنایع نظامی و تخصصی در این مورد اعمال گردید و مخصوصاً رقابتهای انسانها در علوم هستهای ( که فقط برای صلح باید باشد ) ، یکی دیگر از علل پیشرفت فوق سریع این فن در چند ده سال اخیر شد که به علم جوشکاری تبدیل گردید.
جوش پلاسما
به تناسب کاربرد دستی واتوماتیک، پلاسماپیشنهادات سودمند زیادی در،تولید درمقیاس کوچک ودقت جوش، حجم زیاد فلز و درمجموع تجهیزات دارد. از سال 1964 که مقدمه ای برای صنعت جوشکاری بود، جوشکاری پلاسما براساس مزایای اصلی، کنترل ودقت باتولید جوشهایی با کیفیت بالا با استفاده از الکترودهای بادوام در کارهایی با حجم زیاد توسعه یافت.
اکنون از پلاسما برای جوشکاری هر چیزی استفاده می شود : ازوسایل جراحی وآشپزخانه ازطریق صنایع غذایی گرفته تا تعمیر پره های موتور جت. درواقع پلاسما گازی است که در دمای خیلی زیاد، گرم و یونیزه شده بطوریکه هادی جریان الکتریکی می شود . فرایند جوشکاری قوسی پلاسما شبیه GTAW (جوشکاری باالکترود تنگستنی به همراه گازمحافظ ) است که ازپلاسما برای انتقال جریان الکتریکی لازم برای ایجاد قوس به قطعه کار استفاده می شود . قطعه کار براثر گرمای شدید قوس ،گداخته و ذوب می شود. انواع فلزاتی که می توانند توسط پلاسما جوش داده شوند عبارتند از : فولاد ضدزنگ فلزات دیرگداز ودیگرفولاها: تیتانیم، تانتالیم ،مس، برنج ،طلا، نقره، الیاژی از آهن ونیکل وکبالت (kovar )و Inconel, وzircalloy
قوس جوشکاری پلاسما ( راست )
در مشعل جوشکاری پلاسما الکترود تنگستنی دریک نازل مسی که در نوک آن دریچه ی کوچکی وجود دارد قرار می گیرد . شعله قوس ابتدا میان مشعل الکترود و نوک نازل بوجود می آید وسپس قوس ایجاد شده به قطعه کار منتقل می شود. گاز پلاسما و قوس دریک مسیر با یک منفذ محدود شده باهم برخورد می کنند و مشعل یک گرمای فشرده ومتمرکز با دمای بالا به قسمت کوچکی اعمال می کند . با این فرایند تجهیزات جوش پلاسما کارایی بالایی دارد که قادر است جوشهایی باکیفیت خیلی خوبی تولید کند . در جوشکاری موادی که درزمانی که گرم می شوند تمایل به خروج گاز دارند، الکترودهایی که محافظت می شوند کمتر در معرض آلودگی و فساد قرار می گیرند . این امر باعث طولانی تر شدن عمر الکترود و افزایش زمان نگهداری الکترود می گردد. (معمولاً 1/8 ساعت ) گاز پلاسما معمولا از گاز آرگون است و مشعل نیز از گاز دومی ( آرگون، آرگون/ هیدروژن ویا هلیم ) برای کمک در محافظت حوضچه جوش استفاده می کند تا اکسیداسیون را کاهش دهد . سوراخ نازل با در نظر گرفتن اندازه مهره جوش انتخاب می شود تا قطر و ضخامت قوس بر اساس آن کنترل شود . تجهیزات اضافی لازم برای جوشکاری پلاسما شامل : 1- منبع قدرت 2 – consol پلاسما ( درونی یا بیرونی) 3- دستگاه گردش آب ( درونی یا بیرونی) -4 مجموعه مشعل فرعی جوش پلاسما ( نوک ها، سرامیک ها، گیره ودستگاه اندازه گیری نصب الکترود ) شروع و انتقال قوس پلاسما آرام و پیوسته ویکنواخت است که این امر در جوش صفحات نازک وسیم های باریک و اجزای کوچک مناسب است . شکل وطول قوس وتوزیع حرارت پلاسما، فاصله بحرانی گریز جوش را نسبت به حالت GTAW کمتر می کند . تقریباً در تمام کاربردها به کنترل اتوماتیک ولتاژ ( AVC ) نیازی نیست . پایداری بالای قوس در طی جوشکاری از وزش و انحراف قوس می کاهد واپراتور را قادر می سازد از وسایل شروع کننده قوس در نزدیکی ومجاورت محل اتصال جوش برای نفوذ بهتر حرارت استفاده نماید . چگالی انرژی قوس در پلاسما در حدود 3 برابر انرژی قوس GTAW است که از شکستگی و تغییر شکل جوش واز H .A .Z) ) می کاهد که این امر باعث ریزدانه شدن جوش وافزایش سرعت جوشکاری می شود. (این جوش در کمتراز 0.005 ثانیه کامل می شود) جریان اولیه کمتر از 1 آمپر می تواند دقت جوشکاری اجزای کوچک وکنترل بهتر جوش را در جوشکاری لبه ای شیب دار را در بر داشته باشد . در هنگام شروع قوس منبع قدرت پلاسما، کمترین صدا را تولید می کند و پلاسما می تواند از تجهیزات کنترل عددی (NC ) بدون دخالت الکتریکی استفاده کند .این امر همچنین در درز گیری با جوش اجزای الکترونیکی بر خلاف فرایند GTAW که با دخالت الکتریکی ممکن است آسیب هایی به اجزای حساس الکترونیکی درونی وارد کند، استفاده می شود . منبع پلاسما دامنه وسیعی از فرکانس برای کاربردهای پالسی در اختیار ما قرار می دهد که گاهی اوقات این فرکانسها به بالاتر از 10 Khz می رسد. جوشکاری پلاسما کاربردهای فراوان و گوناگونی دارد. بطور کلی برش و تعمیر قالب ها در صنعت با استفاده از پلاسما در حال رشد است . منبع قدرت میکروقوس این توانایی را دارد که قوسی با جریان پایین ایجاد کند و راهی موثر برای تعمیر و شکافهای کم و جزیی و گودی های ناشی از استفاده نادرست و فرسودگی و تعمیر اصولی و عملیات حرارتی داشته باشد. برای جوش لبه های بیرونی فرایند پلاسما به استفاده از طول قوسی بلندتر و پایدار که به مهارت زیادی در کنترل حوضچه ندارد نیاز توصیه می کند. در مواجه با گوشه های درونی شکاف ها، الکترود تنگستنی GTAW/TIG می تواند انجام فرایند جوش را بهتر کند. در جوشکاری تسمه ها توسط پلاسما انتقال قوس به قطعه کار با کار کردن بر روی لبه های اتصال بطور پیوسته صورت می گیرد . در کاربرد های اتوماتیک در جوشهای طویل و بلند نیازی به کنترل فاصله نیست و این فرآیند نیازکمتری به تعمیر اجزای مشعل دارد . تیوب و لوله از نورد تیوب و بوسیله رولهای فرم دهنده مواد و جوشکاری لبه ای
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 2
جوش قوس الکتریکی
جوش قوس الکتریکی یکی از متداول ترین روشهای اتصال قطعات کار می باشد، ایجاد قوس الکتریکی عبارت از جریان مداوم الکترون بین دو الکترود و یا الکترود و یا الکترود و کار بوده که در نتیجه آن حرارت تولید می شود. باید توجه داشت که برای برقراری قوس الکتریک بین دو الکترود و یا کار و الکترود وجود هوا و یا یک گاز هادی ضروری است. بطوریکه در شرایط معمولی نمی توان در خلاء جوشکاری نمود.در قوس الکتریکی گرما و انرژی نورانی در مکانهای مختلف یکسان نبوده بطوریکه تقریباً 43% از حرارت درآند و تقریباً 36% در کاتد و 21% بقیه بصورت قوس ظاهر می شود. دمای حاصله از قوس الکتریکی بنوع الکترودهای آن نیز وابسته است بطوریکه در قوس الکتریکی با الکترودهای ذغالی تا 3200 درجه سانتیگراد در کاتد و تا 3900 در آند حرارت وجود دارد. دمای حاصله در آندو کاتد برای الکترودهای فلزی حدوداً 2400 درجه سانتیگراد تا 2600 درجه تخمین زده شده است.در این شرایط درجه حرارت در مرکز شعله بین 6000 تا 7000 درجه سانتیگراد می باشد از انرژی گرمائی حاصله در حالت فوق فقط 70% تا 60% در قوس الکتریک مشاهده گردیده که صرف ذوب کردن و عمل جوشکاری شده و بقیه آن یعنی 30% تا 40% بصورت تلفات گرمائی به محیط اطراف منتشر می گردد.طول قوس شعله Arc length بین 8/0 تا 6/0 قطر الکترود می باشد و تقریباً 90% از قطرات مذاب جدا شده از الکترود به حوضچه مذاب وارد می گردد و 10% باطراف پراکنده می گردد. برای ایجاد قوس الکتریکی با ولتاژ کم بین 40 تا 50 ولت در جریان مستقیم و 60 تا 50 ولت در جریان متناوب احتیاج می باشد ولی در هر دو حالت شدت جریان باید بالا باشد نه ولتاژانتخاب صحیح الکترود برای کارانتخاب صحیح الکترود برای جوشکاری بستگی به نوع قطب و حالت درز جوش دارد مثلاً یک درز V شکل با زاویه کمتر از 40 درجه با ضخامت زیاد حداکثر با قطر اینچ که معادل 2 میلیمتر است برای ردیف اول گرده جوش استفاده می گردد تا کاملاً در عمق جوش نفوذ نماید. ولی چنانچه از الکترود با قطر بیشتر استفاده شود مقداری تفاله در ریشه جوش باقی خواهد ماند. که قدرت و استحکام جوش را تقلیل می دهدانتخاب صحیح الکترود( از نظر قطر(بایستی توجه داشت که همیشه قطر الکترود از ضخامت فلز جوشکاری کمتر باشد هر چند که در بعضی از کارخانجات تولیدی عده ای از جوشکاران الکترود با ضخامت بیشتر از ضخامت فلز را به کار می برند. این عمل بدین جهت است که سرعت کار زیادتر باشد ولی انجام آن احتیاج به مهارت فوق العاده جوشکار دارد.همچنین انتخاب صحیح قطر الکترود بستگی زیاد به نوع قطب ( + یا - ) و حالت درز جوش دارد مثلاً اگر یک درز V شکل با زاویه کمتر از 40 درجه باشد بایستی حداکثر از الکترود با قطر پنج شانزدهم اینچ برای ردیف اول گرده جوش استفاده کرد تا کاملاً بتوان عمق درز را جوش داد. چنانچه از الکترود با قطر زیادتر استفاده شود مقداری تفاله در جوش باقی خواهد ماند که قدرت و استحکام جوش را به طور قابل ملاحظه ای کاهش خواهد داد. در حین جوشکاری گاهی اوقات جرقه هائی به اطراف پخش می شود که دلایل آن چهار مورد زیر است.1. ایجاد حوزه مغناطیسی و عدم کنترل قوس الکتریکی2. ازدیاد فاصله الکترود نسبت به سطح کار3. آمپر بیش از حد یا آمپر بالای غیر ضروری4. عدم انتخاب قطب صحیح برای جوشکاری