لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 28
ترانسفورماتور های جریان Current transformer
در پستهای فشارقوی به منظور اندازه گیری مقدار جریان و یا حفاظت تجهیزات توسط رله های حفاظتی الکتریکی ازترانسفورماتورهای جریان استفاده می شود که دارای دو وظیفه اصلی می باشند :
1ـ پایین آوردن مقدار جریان فشار قوی بطوری که قابل استفاده برای اندازه گیری از قبیل آمپر متر و مگا واتمتر و کنتورهای اکتیو و راکتیو و همچنین رله های حفاظتی جریانی باشد .
2 ایزوله کردن و جدا کردن دستگاههای اندازه گیری و حفاظتی از ولتاژ فشار قوی در اولیه . بطور کلی ترانسفورماتور های جریان اولیه آنها در مسیر جریان مورد حفاظت و یا اندازه گیری قرار گرفته و در ثانویه آن ، با نسبتی معین جریانی متفاوت داریم مثلاً ترانس جریان با نسبت 200/1 یعنی ترانسی که بازای 200 آمپر در طرف اولیه 1 آمپر در طرف ثانویه ( به شرط برقراری مدار ) ایجاد می کند .
طبعاً هر قدر جریان اولیه تغییر کند جریان در طرف ثانویه نیز به همان نسبت تغییر می کند . ولی به خاطر محدودیت هسته ترانس جریان برای عبور خطوط قوای مغناطیسی این قاعده تا حد معینی از افزایش جریان ارتباط دارد . به خاطر حفاظت وسایل اندازه گیری در برابر ضربه های ناشی از اضافه جریان معمولاً ازترانس جریان نهایی استفاده می شود که هسته آنها خیلی زود اشباع می شود . برعکس برای اینکه سیستمهای حفاظتی دقیقتر عمل کنند به ترانس جریانهای احتیاج داریم که هر چه دیرتر اشباع بشوند مثلاً ده ، پانزده یا بیست برابر جریان نامی . طرز کار ترانس جریان نیز بدین صورت است که جریان مدار از اولیه آن عبور کرده و باعث ایجادخطوط قوای مغناطیسی می شود این خطوط قوا به نوبه خود درثانویه ایجاد جریان می کند . جریان موجود در سیم پیچ ثانویه خطوط قوای دیگری را در هسته بوجود می آورد که جهت آن مخالف جهت خطوط قوای اولیه بوده و آنرا خنثی می کند چنانچه مدار ثانویه ترانس جریان در حالی که ترانس در معرض جریان اولیه است باز شود . خطوط قوای مربوط به ثانویه صفر شده و در هسته فقط خطوط قوای مربوط به اولیه باقی می ماند که این خطوط قوای هسته را گرم کرده و باعث سوختن ترانس جریان می شود . لذا همیشه اخطار می شود که ثانویه ترانس جریان که درمدار قرار گرفته باز نشود یا به مداری با مقاومت بیشتر از حد مجاز متصل نشود .
پارامترهای اساسی در C.t ها
1- نقطه اشباع 2ـ کلاس و دقت ترانس جریان
3ـ نسبت تبدیل ترانس 4ـ ظرفیت ترانس جریان
1ـ نقطه اشباع ترانس : ترانسفورماتورهای جریان برایجدا کردن مدار دستگاههای سنجش و حفاظتی از شبکه فشار قوی بکار می رود و اصولاً طوری انتخاب می شوند که در شرایط عادی و اضطراری شبکه بتواند بخوبی کار کند و جریان ثانویه لازم را برای دستگاههای اندازه گیری و حفاظتی تأمین کند اما مسئله اصلی این است که درهنگام اتصال کوتاه چون جریان اولیه ترانسفورماتور زیاد است بالطبع جریان ثانویه نیز زیاد خواهد شد ولی باید ترانسفورماتور جریان طوری عمل کند تا این جریان زیاد نتواند ازدستگاههای اندازه گیری عبور کرده و دستگاه را بسوزاند علاوه بر آن که این جریان نباید سبب فرمان غلط به دستگاههای حفاظتی شده و یا اینکه مانع عمل آنها شود بعبارت دیگر باید ترانسفورماتورهای جریان طوری ساخته شود که در جریانهای زیاد اشباع شده و مانع شود جریان زیادی از دستگاههای اندازه گیری عبور کند ولی برای رله های حفاظتی وضعیت فرق نی کند و ترانسفورماتور جریانی مورد احتیاج است که درجریانهای زیاد اشباع شده و جریان زیاد را تا حد معینی اجازه دهد تا از رله های حفاظتی عبور نماید مشخصه مغناطیسی یا تحریک C.T بستگی به جنس هسته تعداد حلقه های سیم پیچی و سطح مقطع و طول هسته دارد برای یک نوع C.T و هسته های مختلف برای آن ، منحنی های مغناطیسی آنها مشخص شده است . مشاهده می شود که با درنظر گرفتن جنس هسته مقدار چگالی فلو با توجه به تغییرات نیروی تحریک تغییر نموده و منحنی مختلف حاصل می شود . تغییرات جریان ثانویه را با توجه به تغییرات جریان اولیه ملاحظه می کنیداگر جنس هسته ازنوع آهن نیکل دار انتخاب شود مطابق منحنی c برابر جریات حساس است و اگر از نوع a انتخاب شود تا ده برابر و برای b تا 15 برابر جریان ثانویه حساس و بعد از آن اشباع شده و اجازه نمی دهد نقطه kp که آنرا مقطه شروع اشباع knee point می گویند بازای افزایش 50% جریان تحریک ولتاژ تنها 15% افزایش می یابد . مشاهده می شود از نقطه kp به بعد نسبت تبدیل C.T معلوم نیست وجریان ثانویه تقریباً ثابت است تنها اندکی افزایش خواهد داشت. بنابراین نقطه kp در انتخاب ترانسفورماتور جریان پارامتر مهمی است وحتماً باید مد نظر باشد .
2ـ کلاس و دقت اندازه گیری ترانس جریان
مبدلهای جریان اصولاً برای کلاسهای 0.5,0.2,0.1,1,2,5 و10p20 و10p10 و5p20 و5p10 می باشد . بنابراین کلاس ترانسفورماتور های جریا اصولاً یکی از اعداد بالاست . اگر کلاس ترانسفورماتور جریان بصورت apn نشان داده شده باشد اصولاً a مقدار خطای جریان بر حسب درصد وn مضربی از جریان نامی اولیه می باشد مثلاً در ترانسفورماتور 5p10 یعنی تا ده برابر جریان نامی ترانسفورماتور جریان مقدار خطا 5% خواهد بود مشخصات نسبت تبدیل ترانسفورماتور جریان را برای 10p5 و 10p10 در بارهای مختلف نشان می دهد . برای ترانسفورماتور10p5 در 5 برابر جریان نامی خطای حاصل ده درصد است اما درده برابر جریان نامی خطا به سی درصد می رسد بنابراین ترانسفورماتور مذکور با این کلاس برای سیستم حفاظتی مناسب نیست اما خطای ترانسفورماتور10p10
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 2
ترانسفورماتور جریان در پست
در یک پست فشارقوی معمولا" جریان عبوری از قسمتهای مختلف مقدار بالایی بوده و امکان استفاده مستقیم این جریان در سیستمهای کنترل و اندازه گیری و حفاظت وجود ندارد، لذا بایستی جهت کاهش این مقدار جریان به مقدار خیلی پایین و مناسب جهت دستگاههای کنترل و اندازه گیری و حفاظت، از ترانسفورماتورهای جریان استفاده نمود.ترانسفورماتور جریان از دو سیم پیچ اولیه و ثانویه تشکیل شده که جریان واقعی در پست از اولیه عبور نموده و در اثر عبور این جریان و متناسب با آن، جریان کمی (در حدود آمپر) در ثانویه به وجود میآید.بطور کلی ترانسفورماتورهای جریان نقش کاهنده جریان را داشته و تعداد دور اولیه ممکن است یک یا دو دور باشد و لیکن تعداد دور سیم پیچی ثانویه خیلی زیاد میباشد.یکی ازمهمترین موارد در ساختمان یک ترانسفورماتور جریان، اختلاف ولتاژ خیلی زیاد بین اولیه و ثانویه میباشد، زیرا ولتاژ اولیه همان ولتاژ نامی پست است، در حالیکه ولتاژ ثانویه خیلی پایین میباشد که با توجه به این مورد بایستی بین اولیه و ثانویه ایزولاسیون کافی وجود داشته باشد.ترانسفورماتورهای جریانی که در پستهای فشارقوی مورد استفاده قرار میگیرند، دارای ایزولاسیون کاغذ و روغن (توأما") میباشند. طرح این ترانسفورماتورها نیز بستگی به سازنده آن داشته، ولی بطور کلی ترانسفورماتورهای جریان از نظر ساختمانی در دو نوع زیر ساخته میشوند:1) ترانسفورماتورهای جریان که ثانویه آن در قسمت بالا بوده و به نامTop Core" " و یا "Inverted" مشهور میباشند. در این ترانسفورماتورها مسیر طی شده توسط اولیه در داخل ترانس کوتاهترین مسیر بوده و طرح آن به ترتیبی است که سیم پیچ ثانویه دور یک هسته که به صورت یک حلقه میباشد، پیچیده شده و هادی اولیه از وسط این حلقه عبور مینماید. جهت ایجاد عایق کافی بین ثانویه و اولیه در اطراف سیم پیچ ثانویه تعداد زیادی دور کاغذ که با توجه به ولتاژ ترانسفورماتورها تعیین میگردد، پیچیده میشود و فضای خالی بین کاغذ و اولیه نیز توسط روغن احاطه میشود. در ولتاژهای بالا ممکن است که سیم پیچ ثانویه در یک قالب آلومینیومی جاسازی شود.ترمینالهای ثانویه بوسیله سیمهای عایق شده که از داخل یک لوله میگذرد، به قسمت پایین منتقل میشود.2) ترانسفورماتورهای جریان هسته پایین و یا "Tank Type": در این نوع، هادی اولیه در داخل یک بوشینگ به شکل "U" قرار دارد، بطوریکه قسمت پایین "U" در داخل یک تانک قرار دارد و در این حالت اطراف اولیه بوسیله کاغذ عایق شده و در روغن غوطهور میباشند. سیم پیچیهای ثانویه بصورت حلقه، هادی اولیه را در بر میگیرند. در این طرح طول اولیه نسبتا" زیاد بوده و عبور جریان باعث گرم شدن ترانس جریان میگردد.در هر دو حالت فوق بایستی سعی شود که به هیچ عنوان هوا و یا ذرات دیگر به داخل محفظه ترانسفورماتورهای جریان نفوذ ننموده و از طرف دیگر امکان انبساط و انقباض روغن در اثر تغییر درجه حرارت نیز وجود داشته باشد، لذا در بالای ترانسفورماتورها بایستی فضای خالی به وجود آورد که به منظور ایزوله نمودن از هوا، از فولاد یا تفلون و یا دیافراگمهای لاستیکی (ارتجاعی) استفاده میشود که در اثر انبساط و انقباض روغن بالا و پایین میروند. در بعضی از طرحها نیز محفظه بالای روغن را از گاز نیتروژن پر میکنند.در بعضی از دستگاهها نظیر کلیدهایی از نوع "Dead Tank Type" و یا ترانسفورماتورهای قدرت و راکتورها جهت صرفهجویی میتوان ثانویه یک ترانس جریان را در داخل بوشینگ دستگاهها قرار داده، بطوریکه اولیه آن با اولیه دستگاه مشترک باشد. این نوع را ترانسفورماتورهای جریان از نوع بوشینگ مینامند. در ولتاژهای پایین نیز ممکن است از رزین به عنوان ماده جامد عایقی استفاده نمود که این نوع ترانسفورماتورهای جریان تا ولتاژ 63 کیلوولت کاربرد بیشتری دارند و در حال حاضر سازندگان مختلفی سعی مینمایند که این طرح را برای ولتاژهای بالاتر نیز مورد استفاده قرار دهند.همانگونه که در بالا ذکر شد، ترانسفورماتور جریان به عنوان کاهش دهنده جریان اولیه در پست به منظور استفاده در سیستم های کنترل و اندازه گیری و همچنین سیستم حفاظت میباشد. معمولا" سیستمهای مذکور در ولتاژها و جریانهای پایین کار مینمایند. مقادیر جریان نامی ثانویه استاندارد که با توجه به موضوع مذکور تعیین گردیده عبارتند از:1، 2و 5 آمپر که این مقادیر جهت اتصال ستاره بوده و در صورتی که جهت اتصالات داخل مثلث استفاده شود، این مقدار به عدد تقسیم میگردد. مقادیر جریان اولیه استاندارد به شرح زیر میباشند:75- 60- 50- 40- 30- 25- 20- 15- 12.5- 10 آمپر، مضارب ارقام فوق برای جریانهای بالاتر از 100 آمپر نیز مورد استفاده قرار میگیرند.هسته سیم پیچ ثانویه برای سیستمهای کنترل و اندازه گیری با سیستمهای حفاظتی از لحاظ اشباع متفاوت میباشد. در سیستمهای کنترل و اندازه گیری معمولا" جریان نامی مطرح بوده و در مواقع ایجاد جریانهای زیاد ناشی از اتصال کوتاه بایستی سعی نمود که به دستگاههای اندازه گیری صدمه وارد نشود. لذا لازم است که هسته ثانویه در جریانهای نامی به اشباع برسد، لیکن در سیستمهای حفاظت که معمولا" در مواقع ایجاد اتصال کوتاه عمل مینمایند بایستی سعی شود که مقادیر جریان اتصال کوتاه که چندین برابر جریان نامی میباشند تا حد ممکن به دقت در ثانویه به وجود آیند. لذا هسته سیم پیچهای ثانویه مربوط به حفاظت بایستی در جریانهای خیلی بالا نیز اشباع نشود. با توجه به مطالب فوق، معمولا" ترانسفورماتور جریان طوری ساخته میشود که دارای چند هسته بوده و بعضی از این هستهها ممکن است جهت حفاظت و بعضی جهت اندازه گیری و کنترل مورد استفاده قرار گیرند. در حال حاضر حداکثر تعداد ثانویه در ترانسفورماتورهای جریان 6 عدد میباشد.در مورد ترانسفورماتورهای جریان بایستی متذکر شد که ثانویه آن بایستی همیشه بوسیله یک مدار حفاظت یا کنترل بسته شود و زمانی که ثانویه به مدار خارجی متصل نمیباشد، بایستی دو سر ثانویه را به یکدیگر اتصال کوتاه نمود، در غیر اینصورت ولتاژ زیادی در ثانویه تولید و این موجب گرم شدن هسته و انفجار
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 10 صفحه
قسمتی از متن .doc :
جریان متناوب(AC) و جریان مستقیم (DC)
جریان(dc)تعریف جریان مستقیم (DC یا جریان پیوسته)، عبور پیوسته جریان الکتریسیته از یک هادی نظیر یک سیم از پتانسیل بالا به پتانسیل کم است. در جریان مستقیم، بار الکتریکی همواره در یک جهت عبور می کند که این امر جریان مستقیم را از جریان متناوب (AC) متمایز می کند.
در واقع جریان مستقیم ابتدا برای انتقال توان الکتریکی پس از کشف تولید الکتریسیته در اواخر قرن 19 توسط توماس ادیسون بکار رفت. امروزه استفاده از جریان مستقیم برای این منظور غالباً کنار گذاشته شده است، چرا که جریان متناوب (که توسط نیکلا تسلا کشف و توسعه داده شده ) برای انتقال در طول خطوط بلند بسیار مناسب تر است (جنگ جریان ها را مشاهده کنید). هنوز هم انتقال توان DC برای اتصال شبکه های توان AC با فرکانس های مختلف به هم، بکار می رود.
DC
عموماً در بسیاری از کاربرد های کم ولتاژ استفاده می شود، خصوصاً در جایی که انرژی از طریق باتری ها تامین می شود که تنها می توانند ولتاژ DC تولید کنند. اکثر سیستم های خودکار، از DC استفاده می کنند. اگرچه که ژنراتور یک وسیله AC است که از یک یکسو کننده برای تولید DC استفاده می کند. اغلب مدارات الکترونیکی نیاز به یک منبع تغذیه DC دارند. با وجود اینکه DC مخفف جریان مستقیم است اما کلاً به ولتاژهای با پلاریته ثابت، DC گفته می شود. برخی از انواع DC دارای تغییرات ولتاژ زیادی هستند، مانند خروجی دست نخورده یک یکسوساز. با عبور این خروجی از یک فیلتر RC پایین گذر، ولتاژ پایدار تری حاصل می شود.
معمولاً به دلیل ولتاژهای بسیار پایین بکار رفته در سیستم های جریان مستقیم، نصب آنها نیازمند پریزها، کلیدها و لوازم ثابت متفاوتی از آنچه که برای جریان متناوب به کار می رود است. در یک وسیله جریان مستقیم این نکته بسیار مهم است که پلاریته آنرا معکوس وصل نکنیم، مگر اینکه وسیله داری یک پل دیودی برای اصلاح این امر باشد. (که اکثر دستگاه های عمل کننده با باتری این امکان را ندارند.)
امروزه (سال 2000م) گرایشاتی در جهت سیستم های انتقال جریان مستقیم ولتاژ بالا (HVDC) ایجاد شده است. همچنین DC در سیستم های برق خورشیدی که توسط باتری های خورشیدی تغذیه می شوند، به کارمی رود.جریان
متناوب(AC)
تعریف یک جریان متناوب (AC ) جریان الکتریکی ای است که در آن اندازه جریان به صورت چرخه ای تغییر می کند، بر خلاف جریان مستقیم که در آن اندازه جریان مقدار ثابتی می ماند. شکل موج معمول یک مدار AC عموماً یک موج سینوسی کامل است چرا که این شکل موج منجر به انتقال انرژی به موثرترین صورت می شود. اما به هر حال در کاربردهای خاص، شکل موج های متفاوتی نظیر مثلثی یا مربعی نیز استفاده می شود.
تاریخچه توان الکتریکی با جریان متناوب، نوعی از انرژی الکتریکی است که برای تغذیه تجاری الکتریسیته به عنوان توان الکتریکی، از جریان متناوب استفاده می کند. ویلیام استنلی جی آر کسی است که یکی از اولین سیم پیچ های عملی را برای تولید جریان متناوب طراحی کرد. طراحی وی یک صورت ابتدایی ترانسفورماتور مدرن بود که یک سیم پیچ القایی نامیده می شد. از سال 1881م تا 1889م سیستمی که امروزه استفاده می شود، توسط نیکلا تسلا، جرج وستینگهاوس، لوییسین گاولارد، جان گیبس و الیور شالنجر طراحی شد.
سیستمی که توماس ادیسون برای اولین بار برای توزیع تجاری الکتریسیته بکار برد، به دلیل استفاده از جریان مستقیم محدودیت های داشت که در این سیستم برطرف شد. اولین انتقال جریان متناوب در طول فواصل بلند در سال 1891م نزدیک تلورید کلورادو اتفاق افتاد که چند ماه بعد در آلمان ادامه پیدا کرد. توماس ادیسون به علت اینکه حقوق انحصاری اختراعات متعددی را در فن آوری جریان مستقیم «DC» داشت، استفاده از جریان مستقیم را، به شدت حمایت می کرد اما در نهایت جریان متناوب به عرصه استفاده عمومی آمد (جنگ جریان ها را مشاهده کنید). چارلز پروتیوس استینمتز از جنرال الکتریک بسیاری از مشکلات مرتبط با تولید الکتریسیته و انتقال آن را با استفاده از جریان متناوب حل کرد.
توزیع برق و تغذیه خانگی بر خلاف جریان DC، جریان AC را می توان توسط یک ترانسفورماتور به سطوح مختلف ولتاژی انتقال داد. هر چه میزان ولتاژ افزایش یابد، انتقال توان هم موثرتر صورت خواهد گرفت. افزایش میزان قابلیت انتقال توان به علت قانون اهم است، تلفات انرژی الکتریکی وابسته به عبور جریان از یک هادی است. تلفات توان به علت جریان توسط رابطه P=I^2*R محاسبه می شود، بنابراین اگر جریان دو برابر شود، تلفات چهار برابر خواهد شد.
با استفاده از ترانسفورماتور، ولتاژ را می توانیم به یک ولتاژ بالا افزایش دهیم تا بتوانیم توان را در طول فواصل بلند در سطح جریان پایین انتقال داده و در نتیجه تلفات کاهش یابد. سپس می توانیم ولتاژ را دوباره به سطحی که برای تغذیه خانگی بی خطر باشد، کاهش دهیم.
تولید الکتریکی سه فاز بسیار عمومی است و استفاده ای موثرتر از ژنراتورهای تجاری را برای ما ممکن می سازد. انرژی الکتریکی توسط چرخش یک سیم پیچ داخل یک میدان مغناطیسی در ژنراتورهای بزرگ و با هزینه بالا ایجاد می شود. اما به هر حال جای دادن سه سیم پیچ جدا روی یک محور (بجای یک سیم پیچ)، هم نسبتاً آسان و هم مقرون به صرفه است. این سیم پیچ ها روی محور ژنراتورها نصب شده اند اما از نظر فیزیکی جدا اند و دارای یک اختلاف زاویه 120 درجه ای نسبت به هم هستند. سه شکل موج جریان
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 13
در جستجوی خوشبختی
نگاهی به مبانی جریان سودگرایی از دیدگاه جاتن استوارت میل
نام استاد: دکتر اسماعیلی
پژوهشگر: نرگس خاتون حسینی
رشته: فلسفه اخلاق
شماره دانشجویی: 8684020916
دانشگاه: پیام نور مرکز تهران
تیر 1387
فهرست مطالب
چکیده
مقدمه
فایده گرایی
دستورالعمل عمل اساسی اصالت سود
فایده گرایی کیفی به عنوان آلتر نایتویی برای فایده گرایی کمی
فایده گرایی عمل محور و قاعده محور
تفاوت گونه های فایده گرایی
فایده گرایی ناظر به قاعده ی واقعی و فایده گرایی ناظر به قاعده ی آرمانی
نطریه های اخلاقی فاعل محور در مقابل نظریه های اخلاقی مثل محور یا نتیجه گرایانه
فایده گرایی ایده آل
فایده گرایی روان شناسانه
فایده گرایی لیبرال
چندین نقد بر اخلاق فایده گرایی جان استوارن میل و پاسخ میل به آن
نتیجه گیری
منابع
چکیده:
در این گزارش رسمی بر آن است که با بررسی اجمالی و گذرا بر ساختار اندیشه ی جان استیوارت میل و معرفت شناسی او نسبت به جایگاه چیستی و چگونگی مبحث فایده گرایی در نظام اندیشه ای او ارجاعاتی فراهم شود و به سوالاتی چون سعادت چه کسی را باید مدنظر داشت: برخی مربوط به ماهیت وظیفه ی اخلاقی هستند، یعنی آیا باید همیشه سعی کنیم تا حداکثر ممکن سعادت را پدید آوریم یا اینکه وظیفه این است که براساس قواعدی زندگی کنیم که در اکثر موارد سبب افزایش سعادت می شوند، برخی مربوط به تعریف سعادت اندیشی سعادت عبارت است از برطرف شدن نیازها یا برآورده شدن علایق و منابع و یا داشتن لذت و بهره ی بسیار یا ارضای امیال؟ وبا توجه به مبادله کیفیت و کمیت، پاسخ داده شود، بدین ترتیب بخش اول به بیان تعریف فایده گرایی و دستور العمل اساسی اصالت سود و مختصری از مبانی نظری و افکار این فیلسوف اخلاق می پردازد، در بخش دوم فایده گرایی کیفی از دیدگاه میل در مقابل فایده گرایی کمی نبتام که میل در جهت تصیح و تکمیل آن برآمده کاوش می شود در بخش سوم فایده گرایی عمل محور و قاعده محور و تفاوت گونه های فایده گرایی قاعده محور را بررسی نموده و در بخش چهارم فاعل و مسئولیت اصلی و اولیه هر فاعل اخلاقی و توجه به ملاک اخلاقی را از نظر می گذراینم.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 30
فهرست مطالب
عنوان صفحه
انواع الکتروموتورهای جریان مستقیم و الکتروموتور های اونیور سال 1
الکترو موتورهای شنت یا موازی 6
الکترو موتورهای انیور سال 8
الکترو موتورهای سنکرون و اسنکرون و طرق مختلف راه اندازی آنها 9
الکترو موتورهای سنکرون 9
الکتروموتورهای آسنکرون 12
راه اندازی الکتروموتورهای آسنکرون 14
راه اندازی الکتروموتورهای آسنکرون سه فاز به صورت ستاره مثلث 14
راه اندازی الکتروموتور آسنکرون سه فاز روتور فازی به صورت قرار دادن مقاومت
در مسیر روتور 15
استفاده از وسایل حفاظتی الکترو موتورها 18
دستگاههای اندازه گیری و علائم اختصاری آنها به علاوه توسعه حدو اندازه گیری
ولتاژ جریان 18
فرق کنتور با وات متر 22
توسعه حدود اندازه گیری 22
در مورد ولت متر 26
انواع الکتروموتورهای جریان مستقیم و الکتروموتور های اونیور سال
الکتروموتور های جریان مستقیم مانند الکتروموتور های متناوب از سه بخش اصلی تشکیل شده اند .
1-استاتور
2-آرمیچر
3-هسته
برای راه اندازی موتورهای جریان مستقیم که به آنها موتورهای جریان دائم هم می
گویند لازم است که به استاتور و آرمیچر هر دو برق جریان مستقیم را اعمال نماییم.
بر روی محور آرمیچر تعدادی تیغه های مسی قرار دارد که به نام کلکتور معروف می باشند.این تیغه هاکه تعداد شان متناسب با تعداد کلافهای آرمیچر می باشد به طریقی در امتدادمحور نصب شده اند که تشکیل یک شکل استوانه ای را روی محور آرمیچر می دهند به نحوی که تمام تیغه ها نسب به همدیگر و بدنه عایق می باشند،دنباله این تیغه ها به
کلافهای سیم پیچی آرمیچر که به صورت موجی یا خوابیده می باشند اتصال و لحیم شده اند .کار این کلکتور جمع کردن جریان های مثبت ومنفی می باشد که در نتیجه یکسوساز،
هم می باشد.به شکل زیر توجه نمایید.
آرمیچر قطب استاتور
s ثابت N ثابت
+ -
با توجه به شکل ملاحظه می شود که کلکتور (محل اتصال + و+برق )کاری می کند که همیشه جریان مثبت زیر قطب Sاستاتور و جریان منفی زیر قطب Nاستاتور قرار میگیرند و یا برعکس وبا وجود کلکتور این وضعیت ثابت می ماند،همانطور که می دانیم کلکتور در ژنراتورها ،جریان تولید شده را که در کلافهای آرمیچر به صورت متناوب تولید می شوند،می گیرد و به صورت یکسو به بیرون می فرستد،ولی در الکتروموتور های جریان مستقیم وظیفه کلکتور این است که جریان مستقیمی را که از بیرون به ذغال های آن وصل شده است از طریق تیغه های خود می گیرد و به داخل سیم پیچی آرمیچر می فرستد به نحوی که قطبهای آرمیچر متناسب با دور آرمیچر تغییر پیدا کنند،یعنی قسمتی از آرمیچر که زیر قطب Nاستاتور قرار دارد همیشه مثلاًS و قسمت دیگری از آرمیچر که زیر قطب S استاتور قرار می گیرد همیشه N باشد.(با توجه به شکل صفحه قبل)
دور الکتروموتور های جریان مستقیم قابل کنترل و کم و زیاد شدن میباشد،هم از طریق مدار قطبهای استاتور و هم از طریق برق آرمیچر ،چنانچه جریان قطبهای استاتور را به وسیله رئوستا کم کنیم دورموتور ،زیاد می شود وبر عکس اگر جریان قطبهای استاتور زیاد شود.دور کم میشود.همچنین اگر جریان آرمیچر را زیاد نماییم .دور زیاد واگر کم نماییم دور کم میشود.
برای عوض کردن گردش یا دور موتور ها معمولاً جهت جریان آرمیچر را عوض می کنند البته با تغییر جهت جریان استاتور هم میسر است.