دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

دانشکده

دانلود فایل ها و تحقیقات دانشگاهی ,جزوات آموزشی

تحقیق بهینه سازی و معرفی انواع مختلف روشهای آن

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 29

 

بهینه‌سازی و معرفی انواع مختلف روش‌های آن

چکیده

بهینه‌سازی یک فعالیت مهم و تعیین‌کننده در طراحی ساختاری است. طراحان زمانی قادر خواهند بود طرح‌های بهتری تولید کنند که بتوانند با روش‌های بهینه‌سازی در صرف زمان و هزینه طراحی صرفه‌جویی نمایند. بسیاری از مسائل بهینه‌سازی در مهندسی، طبیعتاً پیچیده‌تر و مشکل‌تر از آن هستند که با روش‌های مرسوم بهینه‌سازی نظیر روش برنامه‌ریزی ریاضی و نظایر آن قابل حل باشند. بهینه‌سازی ترکیبی (Combinational Optimization)، جستجو برای یافتن نقطه بهینه توابع با متغیرهای گسسته (Discrete Variables) می‌باشد. امروزه بسیاری از مسائل بهینه‌سازی ترکیبی که اغلب از جمله مسائل با درجه غیر چندجمله‌ای (NP-Hard) هستند، به صورت تقریبی با کامپیوترهای موجود قابل حل می‌باشند. از جمله راه‌حل‌های موجود در برخورد با این گونه مسائل، استفاده از الگوریتم‌های تقریبی یا ابتکاری است. این الگوریتم‌ها تضمینی نمی‌دهند که جواب به دست آمده بهینه باشد و تنها با صرف زمان بسیار می‌توان جواب نسبتاً دقیقی به دست آورد و در حقیقت بسته به زمان صرف شده، دقت جواب تغییر می‌کند.

مقدمه

هدف از بهینه‌سازی یافتن بهترین جواب قابل قبول، با توجه به محدودیت‌ها و نیازهای مسأله است. برای یک مسأله، ممکن است جواب‌های مختلفی موجود باشد که برای مقایسه آنها و انتخاب جواب بهینه، تابعی به نام تابع هدف تعریف می‌شود. انتخاب این تابع به طبیعت مسأله وابسته است. به عنوان مثال، زمان سفر یا هزینه از جمله اهداف رایج بهینه‌سازی شبکه‌های حمل و نقل می‌باشد. به هر حال، انتخاب تابع هدف مناسب یکی از مهمترین گام‌های بهینه‌سازی است. گاهی در بهینه‌سازی چند هدف به طور همزمان مد نظر قرار می‌گیرد؛ این گونه مسائل بهینه‌سازی را که دربرگیرنده چند تابع هدف هستند، مسائل چند هدفی می‌نامند. ساده‌ترین راه در برخورد با این گونه مسائل، تشکیل یک تابع هدف جدید به صورت ترکیب خطی توابع هدف اصلی است که در این ترکیب میزان اثرگذاری هر تابع با وزن اختصاص یافته به آن مشخص می‌شود. هر مسأله بهینه‌سازی دارای تعدادی متغیر مستقل است که آنها را متغیرهای طراحی می‌نامند که با بردار n بعدی x نشان داده می‌شوند.

هدف از بهینه‌سازی تعیین متغیرهای طراحی است، به گونه‌ای که تابع هدف کمینه یا بیشینه شود.

مسائل مختلف بهینه‌سازی به دو دسته زیر تقسیم می‌شود:

الف) مسائل بهینه‌سازی بی‌محدودیت: در این مسائل هدف، بیشینه یا کمینه کردن تابع هدف بدون هر گونه محدودیتی بر روی متغیرهای طراحی می‌باشد.

ب) مسائل بهینه‌سازی با محدودیت: بهینه‌سازی در اغلب مسائل کاربردی، با توجه به محدودیت‌هایی صورت می‌گیرد؛ محدودیت‌هایی که در زمینه رفتار و عملکرد یک سیستم می‌باشد و محدودیت‌های رفتاری و محدودیت‌هایی که در فیزیک و هندسه مسأله وجود دارد، محدودیت‌های هندسی یا جانبی نامیده می‌شوند.

معادلات معرف محدودیت‌ها ممکن است به صورت مساوی یا نامساوی باشند که در هر مورد، روش بهینه‌سازی متفاوت می‌باشد. به هر حال محدودیت‌ها، ناحیه قابل قبول در طراحی را معین می‌کنند.

به طور کلی مسائل بهینه‌سازی با محدودیت را می‌توان به صورت زیر نشان داد:

Minimize or Maximize : F(X) (1-1 )

Subject to : I = 1,2,3,…,p

j = 1,2,3,…,q

k = 1,2,3,…,n

که در آن X={ بردار طراحی و رابطه‌های (1-1) به ترتیب محدودیت‌های نامساوی، مساوی و محدوده قابل قبول برای متغیرهای طراحی می‌باشند.



خرید و دانلود تحقیق بهینه سازی و معرفی انواع مختلف روشهای آن


تحقیق؛ بهینه سازی و معرفی انواع مختلف روشهای آن

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 29

 

بهینه‌سازی و معرفی انواع مختلف روش‌های آن

چکیده

بهینه‌سازی یک فعالیت مهم و تعیین‌کننده در طراحی ساختاری است. طراحان زمانی قادر خواهند بود طرح‌های بهتری تولید کنند که بتوانند با روش‌های بهینه‌سازی در صرف زمان و هزینه طراحی صرفه‌جویی نمایند. بسیاری از مسائل بهینه‌سازی در مهندسی، طبیعتاً پیچیده‌تر و مشکل‌تر از آن هستند که با روش‌های مرسوم بهینه‌سازی نظیر روش برنامه‌ریزی ریاضی و نظایر آن قابل حل باشند. بهینه‌سازی ترکیبی (Combinational Optimization)، جستجو برای یافتن نقطه بهینه توابع با متغیرهای گسسته (Discrete Variables) می‌باشد. امروزه بسیاری از مسائل بهینه‌سازی ترکیبی که اغلب از جمله مسائل با درجه غیر چندجمله‌ای (NP-Hard) هستند، به صورت تقریبی با کامپیوترهای موجود قابل حل می‌باشند. از جمله راه‌حل‌های موجود در برخورد با این گونه مسائل، استفاده از الگوریتم‌های تقریبی یا ابتکاری است. این الگوریتم‌ها تضمینی نمی‌دهند که جواب به دست آمده بهینه باشد و تنها با صرف زمان بسیار می‌توان جواب نسبتاً دقیقی به دست آورد و در حقیقت بسته به زمان صرف شده، دقت جواب تغییر می‌کند.

مقدمه

هدف از بهینه‌سازی یافتن بهترین جواب قابل قبول، با توجه به محدودیت‌ها و نیازهای مسأله است. برای یک مسأله، ممکن است جواب‌های مختلفی موجود باشد که برای مقایسه آنها و انتخاب جواب بهینه، تابعی به نام تابع هدف تعریف می‌شود. انتخاب این تابع به طبیعت مسأله وابسته است. به عنوان مثال، زمان سفر یا هزینه از جمله اهداف رایج بهینه‌سازی شبکه‌های حمل و نقل می‌باشد. به هر حال، انتخاب تابع هدف مناسب یکی از مهمترین گام‌های بهینه‌سازی است. گاهی در بهینه‌سازی چند هدف به طور همزمان مد نظر قرار می‌گیرد؛ این گونه مسائل بهینه‌سازی را که دربرگیرنده چند تابع هدف هستند، مسائل چند هدفی می‌نامند. ساده‌ترین راه در برخورد با این گونه مسائل، تشکیل یک تابع هدف جدید به صورت ترکیب خطی توابع هدف اصلی است که در این ترکیب میزان اثرگذاری هر تابع با وزن اختصاص یافته به آن مشخص می‌شود. هر مسأله بهینه‌سازی دارای تعدادی متغیر مستقل است که آنها را متغیرهای طراحی می‌نامند که با بردار n بعدی x نشان داده می‌شوند.

هدف از بهینه‌سازی تعیین متغیرهای طراحی است، به گونه‌ای که تابع هدف کمینه یا بیشینه شود.

مسائل مختلف بهینه‌سازی به دو دسته زیر تقسیم می‌شود:

الف) مسائل بهینه‌سازی بی‌محدودیت: در این مسائل هدف، بیشینه یا کمینه کردن تابع هدف بدون هر گونه محدودیتی بر روی متغیرهای طراحی می‌باشد.

ب) مسائل بهینه‌سازی با محدودیت: بهینه‌سازی در اغلب مسائل کاربردی، با توجه به محدودیت‌هایی صورت می‌گیرد؛ محدودیت‌هایی که در زمینه رفتار و عملکرد یک سیستم می‌باشد و محدودیت‌های رفتاری و محدودیت‌هایی که در فیزیک و هندسه مسأله وجود دارد، محدودیت‌های هندسی یا جانبی نامیده می‌شوند.

معادلات معرف محدودیت‌ها ممکن است به صورت مساوی یا نامساوی باشند که در هر مورد، روش بهینه‌سازی متفاوت می‌باشد. به هر حال محدودیت‌ها، ناحیه قابل قبول در طراحی را معین می‌کنند.

به طور کلی مسائل بهینه‌سازی با محدودیت را می‌توان به صورت زیر نشان داد:

Minimize or Maximize : F(X) (1-1 )

Subject to : I = 1,2,3,…,p

j = 1,2,3,…,q

k = 1,2,3,…,n

که در آن X={ بردار طراحی و رابطه‌های (1-1) به ترتیب محدودیت‌های نامساوی، مساوی و محدوده قابل قبول برای متغیرهای طراحی می‌باشند.



خرید و دانلود تحقیق؛ بهینه سازی و معرفی انواع مختلف روشهای آن


تحقیق درباره ی پروژه

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 11

 

تعیین بهینه مکان TCSC به منظور کنترل تراکم و کاهش تلفات با استفاده از الگوریتم ژنتیک

چکیده :

با گسترش روز افزون صنایع، نیاز به انرژی برق نیز افزایش پیدا کرده و به همین دلیل در سال‌های اخیر، روش‌های زیادی به منظور افزایش بهره‌وری از سیستم‌های قدرت مطرح شده است. در این راستا، تراکم و تلفات به عنوان عوامل اصلی در ایجاد محدودیت انتقال توان در سیستم قدرت مطرح شده است. تراکم نتیجه محدودیت‌های شبکه است که ظرفیت نهایی سیستم را مشخص کرده که این امر همزمان توان‌های قراردادی را محدود می کند. سیستم‌های انعطاف‌پذیرانتقال (FACTS) AC می‌توانند به منظور کاهش فلوی توان در خط‌هایی که بار زیاد دارند، مورد استفاده قرار گرفته که موجب افزایش بارپذیری خطوط و کاهش هزینه‌های تولید می شود. در مقاله حاضر سعی شده است با جایابی بهینه و تعیین میزان جبران‌سازی یکی از این ادوات (TCSC)، تراکم خطوط و تلفات اهمی سیستم مورد یابد. نتایج مربوط به اعمال روش پیشنهادی به یک سیستم نمونه ای 30 شینه IEEE گویای این مطلب است.‌‌

مقدمه

امروزه، سیستم‌های قدرت به دلیل افزایش روزافزون مصارف و ورود به بازار آزاد انرژی و تمایل رسیدن به صود بیشتر، در نزدیکی ظرفیت اسمی‌شان مورد استفاده قرار می‌گیرند. موانع پیش رو در توسعه و گسترش شبکه‌های قدرت از جمله هزینه‌های نصب و راه اندازی و محدودیت‌های زیست محیطی سبب می‌شود که حتی در بسیاری موارد، شبکه به صورت اضافه بار مورد استفاده قرار می‌گیرند. از طرف دیگر، مقدار توان عبوری در نقاط مختلف شبکه از طریق قیود پایداری و قابلیت اطمینان در شبکه‌ها محدود می‌شود. بنابراین افزایش توان عبوری از خطوط و ترانسفورماتور‌ها خارج از محدوده مجاز، نباید سیستم قدرت را در وضعیتی قرار دهد که یک خطای تصادفی موجب فروپاشی در آن گردد[1]. بررسی و مطالعه این مفاهیم در قالب مدیریت توان عبوری و تراکم صورت می گیرد.[2و4]

افزایش میزان توان عبوری از خطوط و عدم بهره‌برداری مناسب از شبکه، در بسیاری از شرایط موجب افزایش تلفات توان عبوری از خطوط خواهد شد که این مساله، ظرفیت موثر شبکه و منبع تولید برای تامین بار را با مشکل مواجه می‌سازد. کنترل توان عبوری از خطوط علاوه بر موارد فوق می‌تواند از نظر پایداری خطوط انتقال نیز بسیار حائز اهمیت باشد. لذا ضروری است با استفاده از روش‌هایی مناسب، فلوی توان عبوری از خطوط و مسئله تراکم تحت کنترل درآید. در [,47] روش‌ها و ابزار‌های مختلفی برای مدیریت توان اکتیو عبوری از خطوط ارائه شده است که از جمله آن‌ها می‌توان به ادوات FACTS اشاره کرد. ادوات FACTS، توان عبوری از خط را بدون این که توپولوژی مدار تغییر کند، کنترل نموده و می‌تواند موجب بهبودی عملکرد، کاهش تراکم و افزایش ظرفیت انتقال توان در سیستم گردد. با توجه به قیمت بسیار بالای ادوات FACTS و به منظور استفاده حداکثر از قابلیت‌های این تجهیزات، تعیین محل مناسب برای نصب ادوات FACTS از اهمیت زیادی برخوردار است[5و6]. در این مقاله، هدف تعیین مکان و درصد جبران‌سازی بهینه TCSC به منظور کاهش تلفات، بهبود تراکم و پروفیل ولتاژ است. روش بهینه‌سازی الگوریتم ژنتیک بوده و به منظور ارزیابی قابلیت‌های روش پیشنهادی، از شبکه 30 شینه IEEE به عنوان سیستم آزمون استفاده شده است. نتایج حاصل از شبیه‌سازی که در بخش مطالعات عددی ارائه شده است، قابلیت‌های روش مذکور را تایید می‌نماید.

2- ساختار جبران کننده‌های TCSC

استفاده از جبران‌کننده‌های سری برای افزایش پایداری و بارپذیری شبکه های انتقال، سابقه ای طولانی دارد. اساس کار آن‌ها جبران افت ولتاژ سلفی خط با قرار دادن یک ولتاژ خازنی و کاهش راکتانس موثر خط انتقال است که این عمل همواره با افزایش بارپذیری خطوط انتقال همراه خواهد بود. خطوط انتقال را می‌توان با استفاده از خازن‌های ثابت و یا خازن‌های کنترل شده با تایرستور جبران‌سازی کرد. در آرایش TCSC، از راکتور‌های کنترل شده با تایرستور (TCR) موازی با بخش هایی از یک انک خازنی استفاده می‌شود. این ترکیب به TCSC امکان می‌دهد تا با هدایت تایرستور‌ها، یک المان راکتیو با تغییرات پیوسته را فراهم آید. شکل (1) مدل تک فاز یک TCSC که بین شینه‌های i و j قرار دارد را نشان می‌دهد.

 

در شکل (2) پارامترهای معادل π خط انتقال نشان داده شده است.iδ Vi ولتاژ مختلط شینه i و jδVj ولتاژ مختلط شینه j می باشد. توان اکتیو و راکتیو ارسالی از شینه i به j را می توان به صورت رابطه (1)و (2) بیان کرد.

 

(1)



خرید و دانلود تحقیق درباره ی پروژه


تحقیق درمورد؛ بهینه سازی و معرفی انواع مختلف روشهای آن

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 29

 

بهینه‌سازی و معرفی انواع مختلف روش‌های آن

چکیده

بهینه‌سازی یک فعالیت مهم و تعیین‌کننده در طراحی ساختاری است. طراحان زمانی قادر خواهند بود طرح‌های بهتری تولید کنند که بتوانند با روش‌های بهینه‌سازی در صرف زمان و هزینه طراحی صرفه‌جویی نمایند. بسیاری از مسائل بهینه‌سازی در مهندسی، طبیعتاً پیچیده‌تر و مشکل‌تر از آن هستند که با روش‌های مرسوم بهینه‌سازی نظیر روش برنامه‌ریزی ریاضی و نظایر آن قابل حل باشند. بهینه‌سازی ترکیبی (Combinational Optimization)، جستجو برای یافتن نقطه بهینه توابع با متغیرهای گسسته (Discrete Variables) می‌باشد. امروزه بسیاری از مسائل بهینه‌سازی ترکیبی که اغلب از جمله مسائل با درجه غیر چندجمله‌ای (NP-Hard) هستند، به صورت تقریبی با کامپیوترهای موجود قابل حل می‌باشند. از جمله راه‌حل‌های موجود در برخورد با این گونه مسائل، استفاده از الگوریتم‌های تقریبی یا ابتکاری است. این الگوریتم‌ها تضمینی نمی‌دهند که جواب به دست آمده بهینه باشد و تنها با صرف زمان بسیار می‌توان جواب نسبتاً دقیقی به دست آورد و در حقیقت بسته به زمان صرف شده، دقت جواب تغییر می‌کند.

مقدمه

هدف از بهینه‌سازی یافتن بهترین جواب قابل قبول، با توجه به محدودیت‌ها و نیازهای مسأله است. برای یک مسأله، ممکن است جواب‌های مختلفی موجود باشد که برای مقایسه آنها و انتخاب جواب بهینه، تابعی به نام تابع هدف تعریف می‌شود. انتخاب این تابع به طبیعت مسأله وابسته است. به عنوان مثال، زمان سفر یا هزینه از جمله اهداف رایج بهینه‌سازی شبکه‌های حمل و نقل می‌باشد. به هر حال، انتخاب تابع هدف مناسب یکی از مهمترین گام‌های بهینه‌سازی است. گاهی در بهینه‌سازی چند هدف به طور همزمان مد نظر قرار می‌گیرد؛ این گونه مسائل بهینه‌سازی را که دربرگیرنده چند تابع هدف هستند، مسائل چند هدفی می‌نامند. ساده‌ترین راه در برخورد با این گونه مسائل، تشکیل یک تابع هدف جدید به صورت ترکیب خطی توابع هدف اصلی است که در این ترکیب میزان اثرگذاری هر تابع با وزن اختصاص یافته به آن مشخص می‌شود. هر مسأله بهینه‌سازی دارای تعدادی متغیر مستقل است که آنها را متغیرهای طراحی می‌نامند که با بردار n بعدی x نشان داده می‌شوند.

هدف از بهینه‌سازی تعیین متغیرهای طراحی است، به گونه‌ای که تابع هدف کمینه یا بیشینه شود.

مسائل مختلف بهینه‌سازی به دو دسته زیر تقسیم می‌شود:

الف) مسائل بهینه‌سازی بی‌محدودیت: در این مسائل هدف، بیشینه یا کمینه کردن تابع هدف بدون هر گونه محدودیتی بر روی متغیرهای طراحی می‌باشد.

ب) مسائل بهینه‌سازی با محدودیت: بهینه‌سازی در اغلب مسائل کاربردی، با توجه به محدودیت‌هایی صورت می‌گیرد؛ محدودیت‌هایی که در زمینه رفتار و عملکرد یک سیستم می‌باشد و محدودیت‌های رفتاری و محدودیت‌هایی که در فیزیک و هندسه مسأله وجود دارد، محدودیت‌های هندسی یا جانبی نامیده می‌شوند.

معادلات معرف محدودیت‌ها ممکن است به صورت مساوی یا نامساوی باشند که در هر مورد، روش بهینه‌سازی متفاوت می‌باشد. به هر حال محدودیت‌ها، ناحیه قابل قبول در طراحی را معین می‌کنند.

به طور کلی مسائل بهینه‌سازی با محدودیت را می‌توان به صورت زیر نشان داد:

Minimize or Maximize : F(X) (1-1 )

Subject to : I = 1,2,3,…,p

j = 1,2,3,…,q

k = 1,2,3,…,n

که در آن X={ بردار طراحی و رابطه‌های (1-1) به ترتیب محدودیت‌های نامساوی، مساوی و محدوده قابل قبول برای متغیرهای طراحی می‌باشند.



خرید و دانلود تحقیق درمورد؛ بهینه سازی و معرفی انواع مختلف روشهای آن


مقاله درباره بهینه سازی و توابع دامنه متغیر در LINGO

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 67

 

عنوان:

بهینه سازی و توابع دامنه متغیر در LINGO

خواننده دور اندیش ممکن است چند پله بالاتر را در نظر بگیرد. هنگامی که ما سود مورد انتظار خود را افزایش می دهیم، خط چین نشان دهنده نقاط هم سود، بصورت موازی به سمت بالا انتقال پیدا می کند. این انتقال تا دورترین نقطه ممکنی است که بهترین سود را در یک نقطه شدنی حاصل نماید. این آخرین و بهترین نقطه، C = 30 , A = 60 است و بر روی خط 20A + 30C 2100 قرار دارد. توجه داشته باشید که هر چند سهم سود هر واحد برای Cosmo بیشتر است، اما بیش از 30 دستگاه از آن تولید نکردیم، اگر چه تولید 50 دستگاه نیز شدنی بود. بطور شهودی این نقطه بهینه است و در واقع تنها این نقطه بهینه می باشد. تجزیه و تحلیل گرافیکی این مسئله به ما در فهم آنچه که در مدلهای بزرگتر اتفاق می افتد، کمک می کند.

1 – 4 ) خطی بودن :

اکنون با یک مثال آشنا شدیم. در ادامه مجدداً نیز به این مثال باز خواهیم گشت. این نمونه ای از یک برنامه ریزی خطی است که به اختصار LP نامیده می شود. حل برنامه های خطی بطور ذاتی به مراقب ساده تر از برنامه های کلی تر ریاضیاتی است. بنابراین ارزش این را دارد که در مورد ویژگی – های خطی بودن بیشتر بدانیم.

برنامه ریزی خطی بصورت مستقیم فقط در شرایطی به کار می رود که تاثیر فعالیتهای مختلف در جایی که ما با آن سر و کار داریم، بصورت خطی است. برای مقاصد کاربردی، می توانیم ملزومات خطی بودن را مشتمل بر سه خصوصیت زیر بدانیم :

1 ) متناسب بودن : تاثیر یک متغیر مجزا به خودی خود متناسب است. مثلاً دو برابر شدن میزان فولاد خریداری شده، منجر به دو برابر شدن هزینه خرید آن می شود.

2 ) جمع پذیری : روابط بین متغیرها باید بصورت جمع باشد. برای مثال مقدار دلاری فروش، مجموع فروش دلاری فولاد + فروش دلاری آلومینیم + ... است.

3 ) پیوستگی : متغیرها می بایست پیوسته باشند. برای مثال مقادیر اعشاری برای متغیرهای تصمیم همچون 6.38 مجاز است. اگر 2 و 3 هر دو جواب شدنی باشند، آنگاه 51 . 2 نیز شدنی است. مدلی که شامل دو متغیر تصمیم «قیمت هر واحد فروش رفته» و «مقدار واحد فروش رفته» می باشد، ممکن است متناسب بودن و جمع پذیری را ارضا کند، اما شرایط پیوستگی را نقض کند. فرمولاسیون ممکن برای مواردی که LP به کار می رود، بطور ذاتی بسیار کلی تر از مثال ارائه شده است. تابع هدف ممکن است به جای بیشینه سازی، کمینه سازی باشد. جهت محدودیتها می تواند به جای > ، < باشد و هر یا همه پارامترها می توانند منفی باشند.محدودیت اصلی در دسته مسائلی که می تواند تجزیه و تحلیل شود، از محدودیت خطی بودن منتج می شود.

برای مثال عبارت X * Y ، شرایط متناسب بودن را ارضا می کند، اما تاثیر X و Y بصورت جمع پذیری نیست. در عبارت ، تاثیر X و Y بصورت جمع پذیری است، اما تاثیرات هیچ کدام از آندو بصورت متناسب بودن نیست.

1 – 5 ) تجزیه و تحلیل حل های LP

هنگامی که از کامپیوتر حل یک مسئله ریاضی را می خواهید. برای یک مدل LP درست فرموله شده، مسیر منتها الیه سمت چپ به کار برده می شود. رویه حل ابتدا در پی یافتن یک حل شدنی است. برای مثال حلی که همه محدودیتها را ارضا کند، اما الزاماً بهترین حل نباشد. حل منتها الیه سمت راست که حل حل نشدنی است، در صورتیکه فرموله کننده مصر باشد به کار می رود . یعنی دو یا چند محدودیت که نمی توانند بطور همزمان ارضا شوند، بعنوان مثال دو محدودیت 2 > x و 3

در عمل خروجی No Feasible Solution یا «حل شدنی موجود نمی باشد» می تواند در مسائل بزرگ و پیچیده که در آن یک حد بالا بر روی تعداد ساعتهای در دسترس قابل استفاده است و تقاضای بالای غیر واقع بینانه بر روی تعداد واحدهای تولیدی می باشد. پیغام معادل برای «حل شدنی وجود ندارد» این است که «نمی توانید هم کیک را داشته باشید و هم آن را بخورید!».

اگر یک جواب پیدا شود. آنگاه حل کننده تلاش می کند حل بهینه را بیابد. اگر حالت «حل بیکران» اتفاق بیفتد، دلالت بر این دارد که فرمولاسیون مدل منجر به حالتی می شود که در آن سود بی نهایت امکان پذیر است.

نتیجه گیری واقع بینانه تر آن است که یک محدودیت مهم حذف شده است یا فرمولاسیون شامل خطایی در نوشتن مدل است.

برای نوشتن مدل مسئله Enginola در LINGO کافیست این گونه بنویسیم:

MODEL:

MAX=20 * A+30*C;

A<=60

C<=50

A+2*c<=120;



خرید و دانلود مقاله درباره بهینه سازی و توابع دامنه متغیر در LINGO