لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 37
کنترل الکترونیکی موتور دیزل (EDC)
شرایط فنی
امروزه، در ورای پیشرفتهائی که در زمینهی تزریق سوخت موتور دیزل صورت گرفته، کاهش مصرف سوخت و افزایش در توان و گشتاور، فاکتورهای بسیار مهمی به شمار میآیند. در گذشته، اهمیت این فاکتورها موجب استفادهی بیشتر از موتورهای دیزل با تزریق مستقیم (DI) بوده است. در مقام مقایسه با موتورهای دیزل با پیش محفظه و یا مجهز به محفظهی گردابی، که به نام موتورهای با تزریق غیر مستقیم (IDI) معروفند، موتورهای با تزریق مستقیم دارای فشار تزریق بیشتری هستند. این امر منجر به اختلاط بهتر سوخت- هوا گشته و احتراق در ان کاملتر صورت میگیرد. در موتورهای با تزریق مستقیم، با توجه به این واقعیت که اختلاط بهتر انجام میشود و به علت عدم وجود پیش محفظه و یا محفظه گردابی، هیچ گونه تلفات ناشی از سریز سوخت وجود ندارد و نسبت به موتورهای با تزریق غیر مستقیم، مصرف سوخت 15-10 درصد کاهش مییابد.
علاوه بر این، موتورهای مدرن امروزی بیشتر در معرض مقررات سخت مربوط به گاز اگزوز و صدا هستند. این امر باعث شده است که از سیستم تزریق سوخت موتور دیزل، انتظارات بیشتری مطرح شود، از جمله:
- فشارهای بالا در تزریق سوخت،
- منحنی بنیادیتری از آهنگ سوختدهی،
- شروع تزریق متغیر،
- تزریق پیلوتی،
- سازگاری مقدار سوخت تزریقی، فشار تقویت یافته، و کمیت سوخت تزریقی در یک مرحلهی کاری معین،
- کمیت سوخت راهانداز وابسته به درجهی حرارت،
- کنترل دور آرام مستقل از بار وارده بر موتور،
- تنظیم سرعت مطلوب با توجه به مصرف سوخت و بازده،
- به کارگیری چرخش دوبارهی گاز اگزوز، EGR با کنترل خودکار،
- کاهش در تولرانسها و افزایش در دقت، در تمام طول عمر مفید وسیلهی نقلیه.
گاورنرهای مکانیکی متداول (وزنههای گریز از مرکز) با به کارگیری چندین وسیلهی اضافهشده، شرایط متنوع در حین کار را ثبت میکنند تا تشکیل مخلوط با کیفیت بالا تضمین شود. بنابراین، این نوع گاورنرها به یک کنترل سادهی دستی در موتور محدود میشوند، در صورتی که عمل کنندههای مهم و متنوعی وجود دارند که امکان ثبت آنها توسط این وسائل وجود ندارد و یا اگر هم ثبت شوند، سرعت کار مطلوب نخواهد بود.
مرور کلی سیستم
در سالهای گذشته، به علت افزایش، چشمگیر در توان محاسبهای میکروکنترلرهای موجود در بازار، تبعیت کنترل الکترونیکی دیزل (EDC) از مقررات و شرایطی را که پیشتر یادآور شدیم را ممکن ساخته است.
برخلاف خودروهای دیزلی مجهز به پمپهای انژکتور ردیفی یا آسیابی متداول، رانندهی یک وسیلهی نقلیه کنترل شده توسط EDC نمیتواند هیچ گونه اثر مستقیم روی پمپ انژکتور داشته باشد، به عنوان مثال کنترل مقدار سوخت تزریقی که به طور متداول به وسیلهی پدال گاز و یا سیم گاز انجام میشود، در اینجا حاصل متغیرهای عمل کنندهی متنوعی از جمله وضعیت کاری، دادههای توسط راننده، آلایندههای گاز اگزوز و نظائر آن است.
بدین معنی که یک سیستم ایمنی پیشرفتهای باید به کار برده شود تا خطاها و ایرادات را تشخیص دهد و به نسبت شدت و حدت، راهکارهای مناسب برای رفع آنها را ارائه دهد (به عنوان مثال: محدودیت گشتاور، یا راندن اظطراری خودرو در گسترهی دور آرام (رساندن خودرو به کارگاه). سیستم EDC هم چنین امکان تبادل بین مقادیر به دست آمده در این سیستم با مقادیر حاصل از سایر سیستمهای الکترونیکی در خودرو به وجود آید (به عنوان مثال با سیستم کنترل کشش (TCS) و کنترل الکترونیکی تعویض دنده.) بدین ترتیب، این سیستم میتواند با کل سیستم خودرو ادغام شود.
پردازش دادههای EDC
سیگنالهای ورودی
حسگرها همراه با عمل کنندهها، وسیله ارتباطی بین خودرو و واحد پردازش دادههای آن هستند. سیگنالهای حاصل از حس گرها، از طریق مدار الکتریکی محافظ و اگر لازم باشد از طریق مبدلهای سیگنال و آمپلیفایرها، وارد یک واحد و یا واحدهای متعدد کنترل الکترونیکی (ECU) میشوند.
- سیگنالهای ورودی پیوسته (مثال: اطلاعات حاصل از حسگرهای پیوسته مربوط به مقدار هوای مکیده شده توسط موتور، درجه حرارت هوای ورودی و حرارت خود موتور، ولتاژ باطری و نظائر آنها) به وسیله مبدل پیوسته/ گسسته در ریز پردازنده ECU، به مقادیر گسسته تبدیل میشوند.
- سیگنالهای ورودی گسسته (مثال: سیگنالهای کلید قطع و وصل، یا سیگنال حسگر گسسته از قبیل پالسهای سرعت دورانی از حسگر Hall میتوانند به طور مستقیم توسط ریزپردازندهها پردازش میشوند.
- به منظور از بین بردن پالسهای تداخل کننده، سیگنالهای پالسی شکل که از حسگرهای القائی دریافت میشوند و حاوی اطلاعاتی مانند دور موتور و علامت تنظیم موتور هستند، توسط مدار ویژهای در ECU بهبود یافته و به موج مربعی تبدیل میشوند.
اصلاح سیگنال، بسته به میزان پیچیدگی داخلی حسگر، به طور کامل و یا نسبی در داخل حسگر می تواند انجام شود. شرایط کاری که در نقطهی نصب پیش میآید تعیین کنندهی میزان بارگذاری حسگر است.
اصلاح سیگنال
مدار محافظ برای محدود ساختن سیگنالهای ورودی در حد حداکثر ولتاژ از پیش تعیین شده به کار میرود. سیگنال اصلی با استفاده از صافی، تقریباً به طور کامل از وجود سیگنالهای تداخلی آزاد شده و سپس تقویت مییابد تا بتواند با ولتاژ ورودی واحد ECU متناسب باشد.
پردازش سیگنال در ECU
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 204
(1) گزارش توجیهی
(2) پیشنویس قانون تجارت الکترونیکی
(3) شرح مواد قانونی
(4) منابع
(1) گزارش توجیهی 1
(الف) تجارت الکترونیکی و تجربیات بینالمللی 1
1) واقعیت 1
2) رویکردهای مختلف قانونگذاری در جهان 1
2-1- رویکرد دستوری یا تجویزی 1
2-2- رویکرد دوگانه 1
2-3- رویکرد «حداقلی» 1
3) آثار و فروض قانونی 1
3-1- اثر حقوقی 1
3-2- فرض قانونی 1
4) تشکیلات دفاتر خدمات الکترونیکی (دفاتر خدمات الکترونیکی) صدور جواز و اعطای اعتبار به دفاتر الکترونیکی 1
4-1- مسئولیت 1
4-1-1- زمینه 1
4-1-2- رویکرد کشورها 1
5) سیستمهای بسته و استقلال طرفین 1
5-1- رشد معتنابه سیستمهای بسته 1
5-2- عواملی که بر روی سیستمهای بسته اثر میگذارد 1
6) شناسایی بینالمللی 1
6-1- اقدامات بینالمللی 1
6-1-1 دستورالعمل اتحادیة اروپا 1
6-1-2- آنسیترال 1
6-1-3- کنوانسیون بینالمللی 1
6-1-4- OECD 1
6-1-5- سایر سازمانهای بینالمللی 1
7) قانون تجارت الکترونیکی جمهوری اسلامیایران و رویکرد حقوقی برای تدوین قوانین مکمل 1
7-1- حمایت از مصرفکننده 1
7-2- حمایت از داده/حریم خصوصی 1
7-2-1- حمایت از داده 1
7-2-2- فعالیتهای بینالمللی 1
7-2-3- شورای اروپا 1
7-2-4- OECD 1
7-2-5- سازمان ملل 1
7-2-6- کمیسیون جوامع اروپایی 1
7-2-7- گردش فرامرزی داده 1
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 37
کنترل الکترونیکی موتور دیزل (EDC)
شرایط فنی
امروزه، در ورای پیشرفتهائی که در زمینهی تزریق سوخت موتور دیزل صورت گرفته، کاهش مصرف سوخت و افزایش در توان و گشتاور، فاکتورهای بسیار مهمی به شمار میآیند. در گذشته، اهمیت این فاکتورها موجب استفادهی بیشتر از موتورهای دیزل با تزریق مستقیم (DI) بوده است. در مقام مقایسه با موتورهای دیزل با پیش محفظه و یا مجهز به محفظهی گردابی، که به نام موتورهای با تزریق غیر مستقیم (IDI) معروفند، موتورهای با تزریق مستقیم دارای فشار تزریق بیشتری هستند. این امر منجر به اختلاط بهتر سوخت- هوا گشته و احتراق در ان کاملتر صورت میگیرد. در موتورهای با تزریق مستقیم، با توجه به این واقعیت که اختلاط بهتر انجام میشود و به علت عدم وجود پیش محفظه و یا محفظه گردابی، هیچ گونه تلفات ناشی از سریز سوخت وجود ندارد و نسبت به موتورهای با تزریق غیر مستقیم، مصرف سوخت 15-10 درصد کاهش مییابد.
علاوه بر این، موتورهای مدرن امروزی بیشتر در معرض مقررات سخت مربوط به گاز اگزوز و صدا هستند. این امر باعث شده است که از سیستم تزریق سوخت موتور دیزل، انتظارات بیشتری مطرح شود، از جمله:
- فشارهای بالا در تزریق سوخت،
- منحنی بنیادیتری از آهنگ سوختدهی،
- شروع تزریق متغیر،
- تزریق پیلوتی،
- سازگاری مقدار سوخت تزریقی، فشار تقویت یافته، و کمیت سوخت تزریقی در یک مرحلهی کاری معین،
- کمیت سوخت راهانداز وابسته به درجهی حرارت،
- کنترل دور آرام مستقل از بار وارده بر موتور،
- تنظیم سرعت مطلوب با توجه به مصرف سوخت و بازده،
- به کارگیری چرخش دوبارهی گاز اگزوز، EGR با کنترل خودکار،
- کاهش در تولرانسها و افزایش در دقت، در تمام طول عمر مفید وسیلهی نقلیه.
گاورنرهای مکانیکی متداول (وزنههای گریز از مرکز) با به کارگیری چندین وسیلهی اضافهشده، شرایط متنوع در حین کار را ثبت میکنند تا تشکیل مخلوط با کیفیت بالا تضمین شود. بنابراین، این نوع گاورنرها به یک کنترل سادهی دستی در موتور محدود میشوند، در صورتی که عمل کنندههای مهم و متنوعی وجود دارند که امکان ثبت آنها توسط این وسائل وجود ندارد و یا اگر هم ثبت شوند، سرعت کار مطلوب نخواهد بود.
مرور کلی سیستم
در سالهای گذشته، به علت افزایش، چشمگیر در توان محاسبهای میکروکنترلرهای موجود در بازار، تبعیت کنترل الکترونیکی دیزل (EDC) از مقررات و شرایطی را که پیشتر یادآور شدیم را ممکن ساخته است.
برخلاف خودروهای دیزلی مجهز به پمپهای انژکتور ردیفی یا آسیابی متداول، رانندهی یک وسیلهی نقلیه کنترل شده توسط EDC نمیتواند هیچ گونه اثر مستقیم روی پمپ انژکتور داشته باشد، به عنوان مثال کنترل مقدار سوخت تزریقی که به طور متداول به وسیلهی پدال گاز و یا سیم گاز انجام میشود، در اینجا حاصل متغیرهای عمل کنندهی متنوعی از جمله وضعیت کاری، دادههای توسط راننده، آلایندههای گاز اگزوز و نظائر آن است.
بدین معنی که یک سیستم ایمنی پیشرفتهای باید به کار برده شود تا خطاها و ایرادات را تشخیص دهد و به نسبت شدت و حدت، راهکارهای مناسب برای رفع آنها را ارائه دهد (به عنوان مثال: محدودیت گشتاور، یا راندن اظطراری خودرو در گسترهی دور آرام (رساندن خودرو به کارگاه). سیستم EDC هم چنین امکان تبادل بین مقادیر به دست آمده در این سیستم با مقادیر حاصل از سایر سیستمهای الکترونیکی در خودرو به وجود آید (به عنوان مثال با سیستم کنترل کشش (TCS) و کنترل الکترونیکی تعویض دنده.) بدین ترتیب، این سیستم میتواند با کل سیستم خودرو ادغام شود.
پردازش دادههای EDC
سیگنالهای ورودی
حسگرها همراه با عمل کنندهها، وسیله ارتباطی بین خودرو و واحد پردازش دادههای آن هستند. سیگنالهای حاصل از حس گرها، از طریق مدار الکتریکی محافظ و اگر لازم باشد از طریق مبدلهای سیگنال و آمپلیفایرها، وارد یک واحد و یا واحدهای متعدد کنترل الکترونیکی (ECU) میشوند.
- سیگنالهای ورودی پیوسته (مثال: اطلاعات حاصل از حسگرهای پیوسته مربوط به مقدار هوای مکیده شده توسط موتور، درجه حرارت هوای ورودی و حرارت خود موتور، ولتاژ باطری و نظائر آنها) به وسیله مبدل پیوسته/ گسسته در ریز پردازنده ECU، به مقادیر گسسته تبدیل میشوند.
- سیگنالهای ورودی گسسته (مثال: سیگنالهای کلید قطع و وصل، یا سیگنال حسگر گسسته از قبیل پالسهای سرعت دورانی از حسگر Hall میتوانند به طور مستقیم توسط ریزپردازندهها پردازش میشوند.
- به منظور از بین بردن پالسهای تداخل کننده، سیگنالهای پالسی شکل که از حسگرهای القائی دریافت میشوند و حاوی اطلاعاتی مانند دور موتور و علامت تنظیم موتور هستند، توسط مدار ویژهای در ECU بهبود یافته و به موج مربعی تبدیل میشوند.
اصلاح سیگنال، بسته به میزان پیچیدگی داخلی حسگر، به طور کامل و یا نسبی در داخل حسگر می تواند انجام شود. شرایط کاری که در نقطهی نصب پیش میآید تعیین کنندهی میزان بارگذاری حسگر است.
اصلاح سیگنال
مدار محافظ برای محدود ساختن سیگنالهای ورودی در حد حداکثر ولتاژ از پیش تعیین شده به کار میرود. سیگنال اصلی با استفاده از صافی، تقریباً به طور کامل از وجود سیگنالهای تداخلی آزاد شده و سپس تقویت مییابد تا بتواند با ولتاژ ورودی واحد ECU متناسب باشد.
پردازش سیگنال در ECU
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 37
کنترل الکترونیکی موتور دیزل (EDC)
شرایط فنی
امروزه، در ورای پیشرفتهائی که در زمینهی تزریق سوخت موتور دیزل صورت گرفته، کاهش مصرف سوخت و افزایش در توان و گشتاور، فاکتورهای بسیار مهمی به شمار میآیند. در گذشته، اهمیت این فاکتورها موجب استفادهی بیشتر از موتورهای دیزل با تزریق مستقیم (DI) بوده است. در مقام مقایسه با موتورهای دیزل با پیش محفظه و یا مجهز به محفظهی گردابی، که به نام موتورهای با تزریق غیر مستقیم (IDI) معروفند، موتورهای با تزریق مستقیم دارای فشار تزریق بیشتری هستند. این امر منجر به اختلاط بهتر سوخت- هوا گشته و احتراق در ان کاملتر صورت میگیرد. در موتورهای با تزریق مستقیم، با توجه به این واقعیت که اختلاط بهتر انجام میشود و به علت عدم وجود پیش محفظه و یا محفظه گردابی، هیچ گونه تلفات ناشی از سریز سوخت وجود ندارد و نسبت به موتورهای با تزریق غیر مستقیم، مصرف سوخت 15-10 درصد کاهش مییابد.
علاوه بر این، موتورهای مدرن امروزی بیشتر در معرض مقررات سخت مربوط به گاز اگزوز و صدا هستند. این امر باعث شده است که از سیستم تزریق سوخت موتور دیزل، انتظارات بیشتری مطرح شود، از جمله:
- فشارهای بالا در تزریق سوخت،
- منحنی بنیادیتری از آهنگ سوختدهی،
- شروع تزریق متغیر،
- تزریق پیلوتی،
- سازگاری مقدار سوخت تزریقی، فشار تقویت یافته، و کمیت سوخت تزریقی در یک مرحلهی کاری معین،
- کمیت سوخت راهانداز وابسته به درجهی حرارت،
- کنترل دور آرام مستقل از بار وارده بر موتور،
- تنظیم سرعت مطلوب با توجه به مصرف سوخت و بازده،
- به کارگیری چرخش دوبارهی گاز اگزوز، EGR با کنترل خودکار،
- کاهش در تولرانسها و افزایش در دقت، در تمام طول عمر مفید وسیلهی نقلیه.
گاورنرهای مکانیکی متداول (وزنههای گریز از مرکز) با به کارگیری چندین وسیلهی اضافهشده، شرایط متنوع در حین کار را ثبت میکنند تا تشکیل مخلوط با کیفیت بالا تضمین شود. بنابراین، این نوع گاورنرها به یک کنترل سادهی دستی در موتور محدود میشوند، در صورتی که عمل کنندههای مهم و متنوعی وجود دارند که امکان ثبت آنها توسط این وسائل وجود ندارد و یا اگر هم ثبت شوند، سرعت کار مطلوب نخواهد بود.
مرور کلی سیستم
در سالهای گذشته، به علت افزایش، چشمگیر در توان محاسبهای میکروکنترلرهای موجود در بازار، تبعیت کنترل الکترونیکی دیزل (EDC) از مقررات و شرایطی را که پیشتر یادآور شدیم را ممکن ساخته است.
برخلاف خودروهای دیزلی مجهز به پمپهای انژکتور ردیفی یا آسیابی متداول، رانندهی یک وسیلهی نقلیه کنترل شده توسط EDC نمیتواند هیچ گونه اثر مستقیم روی پمپ انژکتور داشته باشد، به عنوان مثال کنترل مقدار سوخت تزریقی که به طور متداول به وسیلهی پدال گاز و یا سیم گاز انجام میشود، در اینجا حاصل متغیرهای عمل کنندهی متنوعی از جمله وضعیت کاری، دادههای توسط راننده، آلایندههای گاز اگزوز و نظائر آن است.
بدین معنی که یک سیستم ایمنی پیشرفتهای باید به کار برده شود تا خطاها و ایرادات را تشخیص دهد و به نسبت شدت و حدت، راهکارهای مناسب برای رفع آنها را ارائه دهد (به عنوان مثال: محدودیت گشتاور، یا راندن اظطراری خودرو در گسترهی دور آرام (رساندن خودرو به کارگاه). سیستم EDC هم چنین امکان تبادل بین مقادیر به دست آمده در این سیستم با مقادیر حاصل از سایر سیستمهای الکترونیکی در خودرو به وجود آید (به عنوان مثال با سیستم کنترل کشش (TCS) و کنترل الکترونیکی تعویض دنده.) بدین ترتیب، این سیستم میتواند با کل سیستم خودرو ادغام شود.
پردازش دادههای EDC
سیگنالهای ورودی
حسگرها همراه با عمل کنندهها، وسیله ارتباطی بین خودرو و واحد پردازش دادههای آن هستند. سیگنالهای حاصل از حس گرها، از طریق مدار الکتریکی محافظ و اگر لازم باشد از طریق مبدلهای سیگنال و آمپلیفایرها، وارد یک واحد و یا واحدهای متعدد کنترل الکترونیکی (ECU) میشوند.
- سیگنالهای ورودی پیوسته (مثال: اطلاعات حاصل از حسگرهای پیوسته مربوط به مقدار هوای مکیده شده توسط موتور، درجه حرارت هوای ورودی و حرارت خود موتور، ولتاژ باطری و نظائر آنها) به وسیله مبدل پیوسته/ گسسته در ریز پردازنده ECU، به مقادیر گسسته تبدیل میشوند.
- سیگنالهای ورودی گسسته (مثال: سیگنالهای کلید قطع و وصل، یا سیگنال حسگر گسسته از قبیل پالسهای سرعت دورانی از حسگر Hall میتوانند به طور مستقیم توسط ریزپردازندهها پردازش میشوند.
- به منظور از بین بردن پالسهای تداخل کننده، سیگنالهای پالسی شکل که از حسگرهای القائی دریافت میشوند و حاوی اطلاعاتی مانند دور موتور و علامت تنظیم موتور هستند، توسط مدار ویژهای در ECU بهبود یافته و به موج مربعی تبدیل میشوند.
اصلاح سیگنال، بسته به میزان پیچیدگی داخلی حسگر، به طور کامل و یا نسبی در داخل حسگر می تواند انجام شود. شرایط کاری که در نقطهی نصب پیش میآید تعیین کنندهی میزان بارگذاری حسگر است.
اصلاح سیگنال
مدار محافظ برای محدود ساختن سیگنالهای ورودی در حد حداکثر ولتاژ از پیش تعیین شده به کار میرود. سیگنال اصلی با استفاده از صافی، تقریباً به طور کامل از وجود سیگنالهای تداخلی آزاد شده و سپس تقویت مییابد تا بتواند با ولتاژ ورودی واحد ECU متناسب باشد.
پردازش سیگنال در ECU
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 27
الزامات آموزش الکترونیکی
وقتی صحبت از زیرساخت های آموزش الکترونیکی به میان می آید عموماً اذهان به سمت زیرساخت های سخت افزاری و شبکه ای موردنیاز معطوف می گردند. گرایش سخت افزاری به امر فناوری ارتباطات و اطلاعات ریشه در تاریخ صنعت انفورماتیک این کشور دارد. از سوی دیگر عدم توجه کافی به مفاهیم بنیادین فناوری ها، باعث عدم کارآمدی در بخش های مختلف تصمیم گیری از جمله در زمینه آموزش الکترونیکی گردیده استتوجه به تجربیات صورت گرفته در جهان از جمله مواردی است که می تواند باعث افزایش بهره وری و هدایت صحیح سرمایه گذاری ها در جهت توسعه موزون و پایدار در تمام زمینه های آموزش الکترونیکی گردد. این تجربیات که مبتنی بر روند سعی و خطا و مطالعات صورت گرفته در سایر کشورها شکل گرفته اند منجر به ایجاد دیدگاه ها و استانداردهای مختلف در کلیه زمینه ها از امکان سنجی های اولیه تا تهیه متون درسی، روندهای تولید مواد آموزشی، ارایه دروس، ارزیابی تحصیلی و ... گردیده است.این مقاله به طور خاص به تشریح فناوری های به کار رفته و نحوه ایجاد یک مخزن دیجیتالی قابل توزیع (distributed digital Repository) جهت سازماندهی و نگهداری ابرداده ها (Meta data) و سایر داده های آموزشی با استفاده از فناوری های open source مبتنی بر J2EE, XML و web service می پردازد و سعی می کند اهمیت این مخزن را در بقا و بروزسازی محتوا و نرم افزارهای آموزشی و همچنین برقراری ارتباط این نرم افزارها با مخازن بزرگ اطلاعات نظیر کتابخانه ها و ... روشن سازد.1. منطق توسعه شبکهزیرساخت شبکهای سیستم آموزش الکترونیکی براساس پروتکل TCP/IP و روی هر شبکهای که آنرا پشتیبانی کند قابل اجرا خواهد بود.توصیه میگردد در این بخش از پروژه توسعه براساس نیاز واقعی صورت گیرد. تنها در صورتی شبکه مورد استفاده قرار خواهد گرفت که کاربران بصورت طبیعی و فطری به آن احساس نیاز نمایند. صرف گسترش شبکه و توزیع امکانات ارتباطی نظیر پست الکترونیکی بدون ایجاد زمینههای فرهنگی باعث ایجاد مطالباتی خواهد شد که مجموعه را در ادامه کار ملزم به انجام حرکات شتابزده خواهد کرد و بدون شک معضلات فرهنگی و اطلاعاتی به بار خواهد آورد.این کار از طریق انجام عملیات کارگاهی و حتی تعریف واحد درسی جهت استفاده از شبکه آموزش و تدابیری از این دست قابل انجام خواهد بود.لازم به ذکر است در کشورهای فراصنعتی(جوامع اطلاعاتی) پیش از انجام هرگونه پروژه آموزش الکترونیکی آزمون هایی را جهت بررسی آمادگی کاربران برای دریافت آموزشهای الکترونیکی برگزار مینمایند تا از اتلاف وقت و سرمایه پیشگیری شود. برای نمونه میتوان به آزمون E-Learning Readiness Assessment (tm) اشاره نمود که در آن محیط دریافت کننده آموزش از نقطه نظرات روانشناختی، جامعه شناسی، محیطی، آمادگی منابع انسانی، آمادگی اقتصادی، آمادگی فناوری، آمادگی ابزاری و آمادگی محتوایی بررسی میشوند. برای اطلاعات بیشتر میتوانید به آدرس www.researchdog.com مراجعه فرمایید.ضمناً سرمایهگذاری بیش از حد در زمینه های سختافزاری محدود کننده سرمایه گذاری در بخش های محتوایی و نرمافزاری خواهد شد.2. محتوادر سیستمهای آموزش الکترونیکی گسترده در حجم آموزش و پرورش و دانشگاههای بزرگ هزینه های زیرساخت کمتر از 20% هزینه ها را تشکیل میدهد و بیش از 80% از هزینه ها مربوط به محتوای تهیه شده است. لذا محتوا در این سیستمها جزء دارایی(Asset) محسوب میگردد و در طراحی آن باید ملاحظاتی را در نظر گرفت که با تغییر شرایط زمانی و مکانی، تغییرات محتوا به حداقل ممکن برسد و قسمت عمده محتوا همواره قابل استفاده باشد.در ارتباط با محتوا دو دیدگاه کلی وجود دارد، یکی دیدگاه Contained Self که در آن محتوای آموزشی به نحوی تفکیک ناپذیر به برنامه وابستگی دارد و دیگری دیدگاه شیگرا یا Object Oriented که در آن از مفاهیم طراحی شیگرا نظیرAbstraction, Reusability, Aggregation و Inheritance استفاده میشود. این نوع محتوا امروزه دارای تقسیم بندیهای استانداردی است که براساس آن کوچکترین جزء مستقل قابل دسترسی Reusable Learning Object یا RLO خوانده میشود. هر RLO در واقع یک پودمان درسی است که با قواعد خاصی تهیه میگردد و شامل اجزاء کوچکتری بنام Reusable Information Object (RIO) است.اشیاء آموزشی با قابلیت استفاده مجدد (RLO)RLO رهیافتی جدید را برای تولید محتوا بیان میکند.در این رهیافت محتوا به تکههای کوچکتر (Chunk) تقسیم میگردد. هرچقدر اندازه این تکهها بزرگتر باشد، استفاده مجدد از آنها سختتر است. اشیاء کوچکتر جهت استفاده مجدد نیاز به کار کمتری دارد.در رسانههای آموزشی طول مدت دریافت آموزش که یادگیرنده (Learner) با رضایت و میل شخصی از اطلاعات و نرمافزارهای CBT میتواند استفاده کند بطور متوسط 5 الی 15 دقیقه تخمین زده شده است.این نگرش به محتوا تضمین کننده حداکثر استفاده از محتوای تهیه شده در مقاطع زمانی مختلف خواهد بود.در این راستا استانداردهای گوناگونی در ارتباط با تهیه محتوا بوجود آمده است که از مهمترین آنها میتوان به Cisco RLO Strategy اشاره کرد. البته این استانداردها باید با توجه به شرایط سنی و فرهنگی مخاطبین شبکه مورد بازبینی قرار گیرند.هر RLO دارای این ویژگیها است:* دارای قابلیت ارتباط با سیستم آموزشی (LMS) است.* چگونگی حرکت دانشآموز یا دانشجو بین RLO ها توسط LMS کنترل میگردد.* رخدادهای درون هر RLO مربوط به خود اوست و درون RLO مدیریت میشود. هر RLO در اجرا موجودی مستقل به حساب میآید. * از هر RLO توصیفی که به آن اصطلاحاً ابرداده یا Metadata گفته میشود تهیه میشود که طراحان با کمک آن میتوانند RLO را جستجو کنند. این Metadata توسط سیستم مدیریت محتوا (CMS) مدیریت میشود.جهت استفاده از اشیاء آموزشی (Learning Object) باید آنها را بازیابی کرد. بازیابی یک شی در یک محیط بزرگ توزیع شده Online شبیه Web یا یک اینترانت بزرگ، آسان نیست. جهت رفع مشکل بازیابی باید علاوه بر خود اشیاء آموزشی توصیفات آنها را نیز ذخیره کرد. اگر اشیاء آموزشی را به عنوان دادهها در نظر بگیریم توصیفات آنها دادههایی در مورد دادهها هستند که به آنها ابرداده یا Metadata گویند.