لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 32
فهرست
عنوان صفحه
1-1) مقدمه 2
2-1) عملیات ریاضی 7
1-2-1) معکوس ضرب 10
3-1) سیستم اعدادمبنای در هم وابسطه 12
4-1) تبدیل اعداد به سیستم اعداد ماندهای و برعکس 22
1-4-1-) تبدیل اعداد از سیستم باینری به سیستم ماندهای 24
5-1) انتخاب پیمانه 26
سیستم اعداد ماندهای (باقیمانده)
سیستم اعداد ماندهای یک سیستم اعداد صحیح است، که مهمترین ویژگیاش بطور ذاتی انتقال رقم نقلی مجازی در جمع و ضرب و تفریقهاست، همچنین نتجه جمع و تفریق و ضرب اعداد ما در مرحله اول بدون در نظر گرفتن طول اعداد مشخص میشود، متأسفانه در سیستم اعداد ماندهای عملیات ریاضی دیگری مانند تقسیم و مقایسه و شناسایی علامت خیلی پیچیده و کند هستند از مشکلات دیگر سیستم اعداد ماندهای این است که چون با سیستم اعداد صحیح کار میکند در نتیجه نمایش اعداد اعشاری در سیستم اعداد ماندهای خیلی ناجور است با توجه به خواص سیستم اعداد ماندهای نتیجه میگیریم که در اهداف عمومی کامپیوترها (ماشین حسابها) به صورت کاملاً جدی نمیتواند مطرح بشود. بهرحال ، برای بعضی از کاربرها که اهداف خاصی دارند مثل بسیاری از انواع فیلترهای دیجیتال، تعداد جمع و ضربهایی که اساساً بزرگتر تعداد و درخواست بزرگی دامنه و شناسایی سرریز، تقسیم و شبیه اینها، سیستم اعداد باقیمانده خیلی جذاب و جالب میتواند باشد.
1-1) مقدمه
سیستم اعدادماندهای اساساً بوسیله یک مبنای چندتائی (N - تائی) و نه یک مبنای واحد مثل از اعداد صحیح مشخص میشود. هر کدام از ها باقیمانده پس از تقسیم یک عدد بر آنها است.عدد صیح X در سیستم اعداد ماندهای بوسیلة یک N -تائی مثل نمایش داده میشود که هر یک عدد غیرمنفی صحیح است که در رابطة زیر صادق است:
X
0
1
0
1
0
1
0
1
0
1
0
1
0
2
0
1
2
0
1
2
0
1
2
0
1
2
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
جدول 1-1 نمایش اعداد در سیستم اعداد ماندهای به پیمانة
بزرگترین عدد صحیحی است بطوریکه معروف است به باقیمانده X به پیمانة Mi ، و در روش نوشتن اعداد هر دو و با یک مفهوم استفاده میشوند.
مثال 1-1 سیستم اعدادماندهای 2- باقیماندهای با پیمانههای را ملاحظه کنید در این سیستم نمایش عدد صحیح x=5 به صورت نمایش داده میشود که و از رابطههای زیر بدست میآیند.
چونکه
چونکه
بنابراین در این سیستم اعداد ماندهای با پیمانههای و عدد صحیح 5 به صورت (2,1) نشان داده میشود.
عدد X لزوماً نباید یک عدد صحیح مثبت باشد بلکه میتواند عدد صیح منفی هم باشد برای مثال اگر X=-2 باشد آنگاه
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 22
برنامه خطی اعداد صحیح دوتایی (BILP)
یک مورد خاص ILP زمانی اتفاق می افتد که همه متغیرهای نمونه بتوانند فقط یک یا دو رقم 0 یا 1 را قبول کنند . چنین متغیرهایی متغیرهای دوتایی نامیده می شوند ، و نمونه ها ، برنامه ها ، برنامه های 1-0 یا برنامه های خطی اعداد صحیح دو تایی (BILPS) نامیده می شوند . هر حالتی که بتواند با بله / نه ، (خوب / بد) یا 0/1 نمونهبرداری شود به عنوان متغیردوتایی شناخته می شود . در زیر نمونه های زیادی از متغیرهای دوتایی ذکر شده که ممکن است در طرح تجاری یافت شود :
، اگر یک طرح مراقبت سلامتی جدید پذیرفته شود .
، اگر پذیرفته نشود .
، اگر مجلس خط B برای تولید نمونه های کولس به کار رود .
، اگر به کار نرود .
، اگر یک ایستگاه پلیس جدید در پایین شهر شناخته شود .
، اگر ساخته نشود .
، اگر تولید یک اجناس به عنوان نوع «خوب» قابل قبول باشد .
، اگر به این صورت نباشد .
، اگر بزرگراه 50 ، در سفر بین ددو شهر به کار رود .
، اگر به این صورت نباشد .
، اگر محدودیت خاصی باشد .
، اگر آن محدودیت نیاز نباشد .
، اگر یک گیاه جدید در گاری هندوستان پرورش یابد .
، اگر به این صورت نباشد .
، اگر سومین انتقال به کار رود .
، اگر به این صورت نباشد .
همانطور که این مثالها نشان می دهند ، خیلی ساده است که متغیر دوتایی را به عنوان یک تحقیق در نظر می گیریم یعنی این که این تحقیق قبول شده ، یعنی این تحقیق قبول نشده است . با تفاسیر داده شده در مورد متغیرها ، اکنون ما چند نوع اجبار را مورد آزمایش قرار می دهیم ، که تحت بررسی شورای شهر در «سالم اورگون» می باشد .
شورای شهر سالم :
در آخرین جلسه مالیاتی سال ، شورای شهر «سالم» ، طرح هایی مختص سرمایه باقی مانده در بودجه یک سال ارائه کرده است . نه تحقیق تحت بررسی کامل یک سال قرار گرفته اند . برای آمارگیری حمایت مردم از تحقیق های مختلف ، پرسشنامه هایی به طور تصادفی به رای دهندگان در کل شهر فرستاده می شود و از آنها خواسته می شود که تحقیق ها را به ترتیب از خوب به بد طبقه بندی کنند . ( بالاترین تقدم ، پایین ترین تقدم ) شورا امتیازها را بر اساس 500 پاسخی که دریافت می کند تطبیق می دهد .با این وجود هیئت شورا مکرراً متذکر می شود که تنها به نتایج پرسشنامهها اکتفا نمی کند . آنها در حالیکه تخصیص های بودجه را تهیه می کنند ، مسائل دیگر را هم محاسبه می کنند . برای تخمین هزینه هر تحقیق ، میزان تخمینی ثابت هر شغل جدید باید فراهم شده ، و تطبیق امتیاز پرسشنامه ها در جدول 3-5 خلاصه شده است.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 23 صفحه
قسمتی از متن .doc :
اعداد اول
اعداد اول اعدادی طبیعی هستند که بر هیچ عددی بجز خودشان و عدد ۱ بخشپذیر نباشند. تنها استثنا عدد ۱ است که جزو این اعداد قرار نمیگیرد. اگرعددی طبیعی وبزرگتر از ۱ اول نباشد مرکب است.
عدد یکان اعداد اول بزرگتر از ۱۰ فقط ممکن است اعداد ۱، ۳، ۷، ۹ باشد.
پیدا کردن ضابطه ای جبری برای اعداد اول جزو یکی از معماهای ریاضی باقیمانده است و هنوز کسی به فرمولی برای آنها به دست نیاورده است.
دنبالهٔ اعداد اول به این صورت شروع میشود: ۲، ۳، ۵، ۷، ۱۱، ۱۳، ۱۷، ۱۹ ...
قضیه ۱: تعداد اعداد اول بینهایت است.
برهان: حکم را به روشی که منسوب به اقلیدس است اثبات میکنیم: فرض کنید تعداد اعداد اول متناهی و تعداد آنها n تا باشد. حال عدد M را که برابر حاصلضرب این اعداد به علاوه ۱ را در نظر بگیرید. این عدد مقسومعلیهی غیر از آن n عدد دارد که با فرض در تناقض است.
قضیه ۲ (قضیه اساسی حساب): هر عدد طبیعی بزرگتر از ۱ را می توان به شکل حاصلضرب اعدادی اول نوشت.
قضیه ۳ (قضیه چپیشف):اگر n عددی طبیعی و بزرگتر از ۳ باشد، حتما" بین n و ۲n عدد اولی وجود دارد. قضیه ۴ هر عدد زوج را میتوان بصورت جمع سه عدد اول نوشت.
قضیه ۵ هر عدد فرد (شامل اعداد اول) را میتوان به صورت جمع سه عدد اول نوشت (اثبات بر پایه قضیه ۴)
قضیه 6-هر عدد فرد را میتوان به صورت دو برابر یک عدد اول بعلاوه یک عدد اول دیگر نوشت (برهان آن را بنویسد).
خواص اعداد اول:
1- هر عدد اول برابر است با 6n+1 یا 6n-1 که n یک عدد صحیح است.
2-مجذور هر عدد اول برابر است با 24n+1.
3-تفاضل مجذورهای دو عدد اول مضربی از 24 است.
4-حاصلضرب هر دو عدد اول بجز 2و3 مضربی از 6 بعلاوه یا منهای یک است.
توان چهارم هر عدد اول بجز 2و3 مضربی از 240 بعلاوه یک است.
بزرگترین عدد اول کشف شده برابر دو به توان ۳۰میلیون و ۴۰۲هزار و ۴۵۷منهای یک است.این عدد یک عدد مرسن است. عدد مرسن عددی است که برابر 2 به توان n منهای یک است.
لازم به ذکر است که تعداد 3000 عدد اول در سایت مگاسندر www.megasender.org وجود دارد و افرادی که مایل به دریافت بیشتر این اعداد هستند می توانند با سایت مذکور تماس گرفته و تعداد بیشتری از آنها را بر روی لوح فشرده دریافت نمایند و طراحان این سایت خودشان این اعداد را محاسبه نموده اند
تاریخچه اعداد اول
در سال ۲۰۰۱دو تن از دانشجویان او یعنی کایال و سکسنا به یک نکته بسیار حساس و فنی توجه کردند. ابتدا این مساله سبب شد تا گروه سه نفره در آبهای عمیق نظریه اعداد غوطه ور شوند، اما اندک اندک برایشان روشن شد که تنها یک مانع در راه تکمیل روشی جهت آزمودن دقیق و سریع اعداد اول وجود دارد. مانع از این قرار بود که روش آنان تنها در صورتی کار میکرد که عدد اول مورد نظر که با pنمایش داده میشود همواره در محدوده خاصی جای داشته باشد که با اعدادی که در آزمون شرکت داده میشوند مرتبط باشد. مشخصه ویژه این مانع آن است که عدد " p-1 " باید یک مقسوم علیه یا بخشیاب بسیار بزرگ باشد. گروه سه نفر ریاضی دانان هندی برای غلبه بر مشکل به هر دری زدند و با بررسی مقالات مختلف بالاخره دریافتند که در سال ۱۹۸۵یک ریاضیدان فرانسوی به نام اتن فووری از دانشگاه پاریس ۱۱این نکته را به صورت ریاضی اثبات کرده است. به این ترتیب آخرین بخش معما حل شد و آلگوریتم پیشنهادی این سه نفر با موفقیت پا به عرصه گذارد. اما این موفقیت "مشروط" بود. به این معنی که این روش برای اعداد اولی که انسان در حال حاضر میتوان به سراغ آنها برود از کارآیی چندانی برخوردار نیست. در روایت اولیه روش پیشنهادی، زمان لازم برای محاسبات که متناسب با ارقام عدد اول مورد نظر بود، با آهنگ ۱۰۱۲ازدیاد پیدا می کرد. در روایتهای بهبود یافته اخیر این روش، سرعت ازدیاد زمان لازم برای محاسبات به ۱۰۷.۵کاهش یافته اما حتی در این حالت نیز این روش در مقایسه با روش آ پی آر تنها در هنگامی موثر تر خواهد بود که تعداد ارقام عدد اولی که قصد شکار و یافتن آن را داریم در حدود ۱۰۱۰۰۰باشد. اعدادی تا این اندازه بزرگ در حافظه هیچ کامپیوتر جای نمیگیرند و حتی آن را نمیتوان در کل کیهان جای داد. اما حال که ریاضی دانان توانستهاند یک طبقه خاص از آلگوریتمهای توانی را برای شناسایی اعداد اول مشخص کنند، این امکان پدید آمده که به دنبال نمونههای بهتر این روش بگردند. پومرانس و هندریک لنسترا از دانشگاه کالیفرنیا در برکلی با تلاش در همین زمینه توانستهاند زمان لازم برای محاسبات را از توان ۷.۵به توان ۶کاهش دهند. این دو از همان استراتژی کلی گروه هندی موسسه کانپور استفاده کردند اما تاکتیهای دیگری را به کار گرفتند. اگر فرضیههای دیگری که درباره اعداد اول مطرح شده درست از کار درآید آنگاه میتوان زمان محاسبه را از توان ۶به توان ۳تقلیل داد که در این حد این روش کارآیی عملی پیدا خواهد
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 18 صفحه
قسمتی از متن .doc :
اعداد اول
* لئوپولد کرونکر ریاضیدان آلمانی اظهار داشته است که خداوند اعداد صحیح را آفرید و بشر باقی ریاضیات را. *
درباره ی اعداد اول
در بین اعداد طبیعی بزرگتر از یک یعنی ...و 4و3و2 اعدادی وجود دارند که تنها بر یک و خود بخش پذیرند، این اعداد را اعداد اول می نامند. اعداد اول مبنایی برای همه ی عددهای طبیعی است ، به این معنی که هر عدد طبیعی به صورت حاصل ضرب توانی از اعداد اولی است که مقسوم علیه های این عددند. به عنوان مثال . نخستین هفت عدد اول متمایز عبارتند از: 2و3و7و11و13و17. اینک این سؤال پیش می آید که آیا این رشته از اعداد مختوم است یا اینکه تا بی شمار ادامه دارد. به عبارت دیگر آیا بزرگترین عدد اول وجود دارد یا نه. جواب این است که بزرگترین عدد اول وجود ندارد. این موضوع از عصر طلائی یونانیان مکشوف بوده و توسط اقلیدس در سه قرن قبل از میلاد به اثبات رسیده است. استدلال وی بی اندازه ساده و مبرهن است و هنوز هم تازگی خود را حفظ کرده. پس از اثبات نامتناهی بودن مجموعه ی اعداد اول سؤالاتی دیگر در مورد این اعداد مطرح می شود، که به بعضی از آنها پاسخ داده شده ، ولی برخی هم همچنان بی جواب باقی مانده اند. در این جا چند نمونه از این سؤالات مورد بررسی قرار می گیرند، و ضمناً برهان اقلیدس نیز ارائه خواهد گردید.
معلوم نیست که مفهوم اول برای اولین بار در چه زمانی طرح شده است و چه مدتی سپری گشته تا از مطالعه در خواص اولیه چنین اعدادی به نامتناهی بودن آن پی برده شود. شاید پس از نخستین ملاحظات تجربی و نیز مطالعه ی عملی در خواص اعدادی چون 2و3و11و17 این سؤال طبعاً پیش آمده است.
برهان ذیل، برای اثبات نامتناهی بودن رشته ی اعداد اول هنوز هم از ساده ترین برهان ها در این زمینه است. فرض کنیم که چنین نباشد در این صورت ، عدد اولی مانند p وجود دارد که از هر عدد اول دیگر بزرگتر است. اینک را در نظر می گیریم این عدد بر هیچ یک از اعداد ()بخشپذیر نیست . چون m یک عامل اول دارد و این عامل در بین اعداد ()نیست پس عامل اولی به غیر از اعداد یاد شده دارد و این با فرض ما در تناقض است. این نتیجه ی ظریف و زیبای اقلیدسی ، که ضمناً برهانش هم بسیار ساده است ، یکی از اولین نمونه ی برهانهای مشهود ریاضی است که به طریقه ی برهان خلف صورت گرفته است. پس ازبررسی این حکم سؤالات تازه ای مطرح می شود، و پاسخ به این سؤالات منجر به نتایج و ملاحظات دیگری می گردد. به عنوان مثال ، با بکار بردن مفهوم « فاکتوریل» می توان متقاعد شد که همواره یک رشته ی بقدر کافی طولانی از اعداد طبیعی متوالی که اول نباشد وجود دارد. در واقع به ازای هر n مفروض می توان n عدد متوالی ، با در نظر گرفتن اعداد طبیعی : n!+2,n!+3,n!+4,…,n!+n به دست آورد؛ این اعداد جملگی مرکب اند (غیر اول). زیرا اولی بر 2 ودومی 3 و سومی 4 و n امی برn بخش پذیر است.
هر گاه موضوع را بیشتر تعقیب کنیم، به شگفتی این اعداد و خصیصه ی مسائل مربوط به آن پی خواهیم برد، به تدریج مسائل جدید مطرح می شوند و این مسائل ، مسائل جدید دیگری را پیش می آورند که عموماً پاسخ به بعضی از آنها چندان هم ساده نیست.
از بین مسائل معروف اعداد اول ، مقدماتی ترین آنها مسئله ذیل است: در مورد اعداد طبیعی زوج به امتحان ملاحظه شده است که قابل نمایش به صورت حاصل جمع دو عدد اول است. « کریستیان گلدباخ» ریاضیدان آلمانی حالت کلی را حدس زد. یعنی به حدس اظهار داشت که هر عدد طبیعی زوج بزرگتر از 2 قابل نمایش به صورت حاصل جمع دو عدد اول است. ( این موضوع در گلچین ریاضی هم آمده) تا عصر حاضر این حدس به یقین مبدل نشده است و ریاضیدانان موفق به اقامه ی برهان برای آن نشده اند. صحت این حکم برای اعداد طبیعی زوج کوچکتر از 108 محقق شده است. ( تا سال 1968)
با بکار بردن ماشینهای الکتریکی محاسبه ، می توان آمارهایی فراهم آورد برای نشان دادن اینکه به چند طریق می توان یک عدد زوج مانند 2n به صورت حاصل جمع دو عدد اول نوشت ، عده ی طرق با بزرگ شدن n بزرگ می شوند. در حال حاضر ریاضیدانان روسی « ایوان ماتویویچ ویورگرادوف» ثابت کرده است که هر عدد طبیعی فرد بقدر کافی بزرگ ، قابل نمایش به صورت حاصل جمع سه عدد اول است. فرمولی که بوسیله آن بتوان هر عدد اول بقدر کافی بزرگ را به دست آورد، وجود ندارد. البته عبارت هایی در دست است که از روی آن می توان عده ای از اعداد اول را تعیین کرد. به عنوان مثال فرمول اویلر در دست است که از روی آن می توان عده ای از اعداد اول را تعیین کرد. به عنوان مثال فرمول اویلر به ازای اعداد اول متمایزی به دست می دهد . همچنین معلوم نیست که تعدادی نامتناهی از اعداد اول دوقلو ، یعنی اعداد اولی که تفاضل آنها 2 باشد مانند 5و7 ، 11و13، 29و31 و غیره وجود دارد یا نه. اینها نمونه هایی هستند از مسائلی ساده در اعداد اول که بطور طبیعی مطرح می شوند و اگر چه صورت ظاهری آنها ساده به نظر می رسد، اثبات آنها غالباً دشوار است و این امکان وجود دارد که با معلومات ریاضی عصر ما ثابت نگردند.
اما در مورد حکمی که اخیراً ذکر شد، اطلاعاتی در دست است. به عنوان مثال، معلوم گشته که رشته ی اعداد اول به صورت 4k+1 و4k+3 نامتناهی است. به طور کلی ثابت شده که در تصاعد حسابی ak+b،که در این a وb نسبت به هم اولند و k=1,2,3,… یک تعداد نامتناهی عدد اول وجود دارد.
قضایای اعداد اول
اعداد اول اعدادی طبیعی هستند که بر هیچ عددی بجز خودشان و عدد ۱ بخشپذیر نباشند. تنها استثنا عدد ۱ است که جزو این اعداد قرار نمیگیرد. اگرعددی طبیعی
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 13 صفحه
قسمتی از متن .doc :
تاریخچه پیدایش اعداد
انسان حتی در مراحل اولیه رشدِ خود دارای قابلیتی است ، که آن را حس عدد می نامیم 0 این قابلیت ، بدون دانش مستقیم به او امکان می دهد تا وقتی از مجموعه ای چیزی کاهش یافت ، نقصان آن را درک کند 0
حسِ عددرا با شمارش که محصول زمانهای بعد است ، و همان طور که خواهیم دید یک پدیده ی پیچیده ی مغزی است ، نباید اشتباه کرد 0 تا آنجا که می دانیم ، شمارش ویژه ی بشر است ، در حالی که نمونه هایی از جانوران یافت می شوند که به شکلی ابتدایی دارای حس عددی مشابه با ما هستند 0 در هر حال ، لااقل عقیده ی کسانی که در رفتار حیوانات مطالعه می کنند چنین است ، و این نظریه را دلایل آشکاری تایید می کند 0 برای مثال ، تعداد زیادی از پرندگان دارای این حس عددی هستند 0 از لانه ای که دارای چهار تخم است می توان یکی را برداشت ، بی آنکه پرنده متوجه شود ، اما چون دو تخم را برداریم ، پرنده آشیانه را ترک خواهد کرد 0 پرنده به طریقی غیر از راه شمارش می تواند دو را از سه تمیز دهد . ولی این قابلیت به هیچ وجه محدود به پرندگان نیست . در واقع نمونه ی جالبی که با آن سرو کار داریم ، زنبوری بنام عنتر است 0 این زنبور در حفره های منفرد تخم می گذارد و برای هر تخم مقداری معین کرم شکار می کند تا وقتی بچه ها سر از تخم بیرون آوردند از آنها تغذیه کنند 0 اما تعداد قربانیان به شکلی جالب برای هر نمونه از زنبور معین و مشخص است : بعضی از انواع ، 5 عدد ، پاره ا ی 12 عدد ، عده ای دیگر حتی تا 24 کرم برای هر حفره آماده می کنند 0قابل توجه است که چون جنس مذکرِ این حشره بسیار کوچکتر از جنس مو’نثِ آن است ، مادر به شکلی مرموز می داند که تخم جنس ، مذکر است یا مو’نث ؟ ، و بر حسب جنس تخم ، غذای لازم را برای آنها توزیع می کند 0 او در این مورد اندازه یا نوع طعمه را تغییر نمی دهد ، بلکه برای تخم مذکر 5 کرم و برای تخم مو’نث 6 کرم می گذارد . نظم کار این زنبورها ، و این واقعیت که عمل مزبور در زندگی حشره با وظیفه ی اساسی او ارتباط دارد ، این امر را نسبت به آنچه که در زیر بیان می شود کم اهمیت تر جلوه می دهد 0 به نظر می رسد که رفتار پرنده با توجه و هشیاری همراه است 0شخصی تصمیم گرفت کلاغی را که در برج مراقبت ملک او آشیانه ساخته بود ، شکار کند 0 او بارها کوشش کرد تا پرنده را غافلگیر کند ولی تلاشش بیهوده بود 0 هنگامی که نزدیک به لانه می شد ، پرنده آشیانه ی خود را ترک می کرد و بر درختی دور تر از برج می نشست و تا این شخص برج را ترک نمی کرد به لانه ی خود باز نمی گشت 0 یک روز وی حیله ای بکار برد : دو مرد وارد برج شدند ، یکی داخل آن باقی ماند و دیگری بیرون آمد و پی کار خود رفت 0 اما پرنده فریب نخورد ، او خارج از آشیانه باقی ماندتا مردی که داخل برج بود نیز بیرون آمد 0 در روزهای بعد این تجربه با دو ، سه ، و بعد با چهار نفر تکرار شد ، ولی توفیقی حاصل نشد ، سر انجام ، پنج مرد وارد برج شدند ، یکی باقی ماند و چهار نفر دیگر خارج شدند ، در اینجا کلاغ شمارش را اشتباه کرد ، بدون اینکه بتواند چهار را از پنج تمیز دهد وارد لانه شد 0 در رابطه با حس عددی این واقعیت را یاد آور می شویم که انواعی را که دارای چنین حسی باشند بسیار معدودند و حتی میمونها این حس را ندارند 0
دامنه ی حس عددی حیوانات چنان محدود است که می توان از آن صرف نظر کرد ، یعنی قابلیت دریافت عدد ، به اشکال گوناگونِ آن ، تنها به بعضی از حشرات و پرندگان ، و انسان محدود است 0
صفحه 2 مشاهدات و تجربیات در باره ی سگها ، اسبها و سایر حیواناتِ اهلی نشانه ای از حس عددی در آنها معلوم نکرده است 0
دامنه ی حس عددی انسان نیز خیلی محدود است 0 در تمام موارد عملی ، که انسانِ متمدن ناگزیر از تشخیص عدد می شود ، آگاهانه یا ناخود آگاه قرینه خوانی ، گروه بندی یا شمارش مغزی را به یاریِ حس عددیِ خویش می طلبد 0
شمارشچنان جزو مکمل دستگاه مغزی ما شده است که آزمایشهای روانی در باره ی ادراک شمارشیِ ما با دشواریهای فراوان مواجه می شود 0 با این حال پیشرفتهایی نیز حاصل شده است ، . تجربیاتی که با دقت دنبال شوند این نتیجه ی اجتناب ناپذیر