l در یک مسئله یادگیری با دو جنبه مختلف روبرو هستیم: l نحوه نمایش فرضیه ها l روشی که برای یادگیری برمی گزینیم l در این فصل برای نمایش فرضیه ها از درخت تصمیم استفاده میکنیم و برای یادگرفتن این درخت از روش ID3 استفاده میکنیم. l درختها درهوش مصنوعی برای نمایش مفاهیم مختلفی نظیر ساختار جملات، معادلات، حالات بازی، و غیره استفاده میشود. l یادگیری درخت تصمیم روشی برای تقریب توابع هدف با مقادیر گسسته است. این روش نسبت به نویز داده هامقاوم بوده وقادر است ترکیب فصلی گزاره های عطفی را یاد بگیرد. l این روش جزو مشهورترین الگوریتمهای یادگیری استقرائی است که بصورت موفقیت آمیزی در کاربردهای مختلف بکار گرفته شده است. l درخت تصمیم درختی است که در آن نمونه ها را به نحوی دسته بندی میکند که از ریشه به سمت پائین رشد میکنند و در نهایت به گره های برگ میرسد : l هر گره داخلی یاغیر برگ (non leaf) با یک ویژگی (attribute) مشخص میشود. این ویژگی سوالی را در رابطه با مثال ورودی مطرح میکند. l درهر گره داخلی به تعداد جواب ...
پاورپوینت